Home
Class 12
MATHS
Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3t...

`Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3tan^(-1)g(x)+C ,t h e n` both `f(x)a n dg(x)` are odd functions `f(x)` is monotonic function `f(x)=g(x)` has no real roots `int(f(x))/(g(x))dx=-1/x+3/(x^3)+c`

A

both `f(x)` and `g(x)` are odd functions

B

`f(x)` is one-one function

C

`f(x)=g(x)` has no real roots

D

`int (f(x))/(g(x))dx=(1)/(x)+(3)/(x^(3))+c`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

Let `I=int((x^(4)+1))/((x^(6)+1))dt=int((x^(2)+1)^(2)-2x^(2))/((x^(2)+1)(x^(4)-x^(2)+1))dx`
`=int((x^(2)+1)dx)/((x^(4)-x^(2)+1))-2 int (x^(2)dx)/((x^(6)+1))`
`=int((1+(1)/(x^(2)))dx)/((x^(2)-1+(1)/(x^(2))))-2 int (x^(2)dx)/((x^(3))^(2)+1)`
In the first integral, put `x-(1)/(x)=t," i.e., " (1+(1)/(x^(2)))dx=dt`
and in the second integral put `x^(3) =u, " i.e., " x^(2)dx=(du)/(3)`
Then ` I=int (dt)/(1+t^(2))-(2)/(3)int(du)/(1+u^(2))=tan^(-1) t-(2)/(3)tan^(-1)u +C`
`=tan^(-1)(x-(1)/(x))-(2)/(3)tan^(-1)(x^(3))+C`
Here, `f(x)=x-(1)/(x) and g(x)=x^(3)`
Draw the graphs of `f(x) and g(x)` .
We find that `f(x)` is many-one and `f(x)=g(x)` has no real roots.
`int(f(x))/(g(x))dx=int(x-(1)/(x))/(x^(3))dx=int((1)/(x^(2))-(1)/(x^(4)))dx= -(1)/(x)+(3)/(x^(3))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|77 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If int(x^2-x+1)/((x^2+1)^(3/2))e^x dx=e^xf(x)+c ,t h e n f(x) is an even function f(x) is a bounded function the range of f(x) is (0,1) f(x) has two points of extrema

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to

f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x are identical functions if

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

If int f (x) dx = g (x) +c, then int f(x)g' (x)dx

If int f' (x) e^(x^(2)) dx = (x-1)e^(x^(2)) + c , then f (x) is

If intsinx d(secx)=f(x)-g(x)+c ,t h e n f(x)=secx (b) f(x)=tanx g(x)=2x (d) g(x)=x

Given a real-valued function f which is monotonic and differentiable. Then int_(f(a))^(f(b))2x(b-f^(-1)(x))dx=

Let f(x)=tanxa n dg(f(x))=f(x-pi/4), where f(x)a n dg(x) are real valued functions. Prove that f(g(x))="tan ((x+1)/(x+1))dot