Home
Class 12
MATHS
If the sides a , b and c of ABC are in A...

If the sides `a , b and c` of `ABC` are in `AdotPdot,` prove that `acos^2(C/2)+c cos^2(A/2)=(3b)/2`

Text Solution

Verified by Experts

The correct Answer is:
`a to r; b to s; c to q; d to p`

a. ` int(e^(2x)-1)/(e^(2x)+1)dx=int(e^(x)-e^(-x))/(e^(x)+e^(-x))dx`
`=int((e^(x)+e^(-x))')/(e^(x)+e^(-x))dx`
`=log(e^(x)+e^(-x))`
`=log(e^(2x)+1)-x+C`
b. `I=int(1)/((e^(x)+e^(-x))^(2))dx=int(e^(2x))/((e^(2x)+1)^(2))dx`
`"Put " e^(2x)+1=t " or " 2e^(2x)dx=dt`
` :. I=(1)/(2)int(1)/(t^(2))dt=-(1)/(2)(1)/(t)+C=-(1)/(2(e^(2x)+1))+C`
c. ` I=int(e^(-x))/(1+e^(x))dx=int(e^(-x)e^(-x))/(e^(-x)+1)dx`
` "Put " e^(-x)+1=t " or "-e^(-x)dx=dt`
` :. I=-int((t-1))/(t)dt=int((1)/(t)-1)dt`
`=logt-t+C`
`=log(e^(-x)+1)-(e^(-x)+1)+C`
`=log(e^(x)+1)-x-e^(-x)-1+C`
`=log(e^(x)+1)-x-e^(-x)+C`
d. `I=int(1)/(sqrt(1-e^(2x)))dx=int(e^(-x))/(sqrt(e^(-2x)-1))dx`
`"Put " e^(-x)=t " or " -e^(-x)dx=dt`
` :. I=-int(1)/(sqrt(t^(2)-1))dt`
`=-log[t+sqrt(t^(2)-1)]+C`
`=-log[e^(-x)+sqrt(e^(-2x)-1)]+C`
`=-log[(1)/(e^(x))+(sqrt(1-e^(2x)))/(e^(x))]+C`
`=-log[1+sqrt(1-e^(2x))]+loge^(x)+C`
`=x-log[1+sqrt(1-e^(2x))]+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|10 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Main Previous Year|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If the sides a , b and c of A B C are in AdotPdot, prove that 2sin(A/2)sin(C/2)=sin(B/2)

If the sides a , b and c of ABC are in AP dotPdot, prove that 2sinA/2sinC/2=sinB/2 acos^2C/2+cos^2A/2=(3b)/2

In any triangle prove that a^2 =(b+c)^2 sin^2 (A/2) +(b-c)^2 cos^2 (A/2)

In A B C , prove that (a-b^2cos^2C/2+(a+b)^2sin^2C/2=c^2dot

If Delta ABC is right triangle and if angleA = (pi)/(2) , then prove that cos^(2)B + cos^(2)C = 1

If triangleABC is a right triangle and if angleA=pi/2 , then prove that (i) cos^(2) B+cos^(2)C=1 (ii) sin^(2) B+sin^(2) C=1 cos B-cos C=-1+2 sqrt2 cos""B/2sin ""C/2

In a Delta ABC, prove that a ( cos B + cos C) = 2 (b + c) sin^(2)""(A)/(2)

If the sides of a Delta ABC are a = 4, b = 6 and c = 8, show that 4 cos B + 3 cos C = 2.