Home
Class 12
MATHS
The integral int (sin^(2)x cos^(2)x)/((s...

The integral `int (sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))dx` is equal to (where C is a constant of integration)

A

`(-1)/(1+cot^(3)x)+C`

B

`(1)/(3(1+tan^(3)x))+C`

C

`(-1)/(3(1+tan^(3)x))+C`

D

`(1)/(1+cot^(3)x)+C`

Text Solution

Verified by Experts

The correct Answer is:
C

`I=int(sin^(2)xcos^(2)x)/((sin^(5)x+cos^(3)xsin^(2)x+sin^(3)xcos^(2)x+cos^(5)x)^(2))dx `
Dividing numerator and denominator by ` cos^(10)x,` we get
`I=int(tan^(2)xsec^(6)xdx)/((tan^(5)x+tan^(2)x+tan^(3)x+1)^(2))`
` =int(tan^(2)xsec^(6)x)/((1+tan^(2)x)^(2)(1+tan^(3)x)^(2))dx`
`=int(tan^(2)xsec^(6)x)/((sec^(2)x)^(2)(1+tan^(3)x)^(2))dx`
`=int(tan^(2)xsec^(2)x)/(1+tan^(3)x)^(2)dx`
`=(1)/(3)int(3tan^(2)xsec^(2)x)/((1+tan^(3)x)^(2))dx`
`=(1)/(3)int((1+tan^(3)x)')/((1+tan^(3)x)^(2))dx`
`=(-1)/(3(1+tan^(3)x))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Single Correct Answer Type|48 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|10 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx

int("sin"(5x)/(2))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin^2x + sin^3x cos^2x + cos^5x)^2 \ dx

(cos2x)/(sin ^(2) x cos^(2) x)

int(sin^(2)x+cos^(2)x)/(sin^(2)xcos^(2)x)dx is equal to

int (sin^(8) x - cos ^(8) x)/( 1 - 2 sin^(2) x cos^(2) x) dx is

Integrate the functions (sin^(8)x-cos^(8)x)/(1-2sin^(2)xcos^(2)x)