Home
Class 12
MATHS
In any triangle. if(a^2-b^2)/(a^2+b^2)=(...

In any triangle. `if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B))` , then prove that the triangle is either right angled or isosceles.

Text Solution

Verified by Experts

`(a^(2) - b^(2))/(a^(2) + b^(2)) = (sin (A - B))/(sin (A + B))`
or `(4R^(2) sin^(2) A - 4R^(2) sin^(2) B)/(4R^(2) sin^(2) A + 4R^(2) sin^(2) B) = (sin (A - B))/(sin (A + B))` (Using Sine Rule)
or `(sin (A + B) sin (A- B))/(sin^(2) A + sin^(2)B) = (sin(A - B))/(sin(A + B))`
`rArr sin(A - B) = 0 " or " (sin (pi C))/(sin^(2) A + sin^(2) B) = (1)/(sin (pi - C))`
or `A = B " or " sin^(2) C = sin^(2) A + sin^(2) B`
or `A = B " or " c^(2) = a^(2) + b^(2)` [from the sine rule]
Therefore, the triangle is isosceles or right angled
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.1|12 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.2|8 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

If in a triangle A B C , (2cosA)/a+(cos B)/b+(2cosC)/c=a/(b c)+b/(c a) , then prove that the triangle is right angled.

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

In triangle ABC , if cosA+sinA-(2)/(cosB+sinB)=0 then prove that triangle is isosceles right angled.

If acosA=bcosBthen show that the triangle is either an isosceles triangle or right angled triangle.

In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B) , then prove that cos 2A,cos2B and cos 2C are in AP.

In a Delta ABC, if cos C = (sin A)/(2 sin B) , show that the triangle is isosceles.

In a Delta ABC, prove that (a^(2) - c^(2))/(b^(2)) = (sin (A - C))/(sin(A + C))

If in a triangle (1-(r_1)/(r_2))(1-(r_1)/(r_3))=2 then the triangle is right angled (b) isosceles equilateral (d) none of these

If A B C ,sinC+cosC+sin(2B+C)-cos(2B+C)=2sqrt(2.) Prove that A B C is right-angled isosceles.

If sin^2(A/2), sin^2(B/2), and sin^2(C/2) are in H.P. , then prove that the sides of triangle are in H.P.