Home
Class 12
MATHS
If cos (A /2) =sqrt((b+c)/(2c)) , then ...

If `cos (A /2) =sqrt((b+c)/(2c))` , then prove that `a^2+b^2=c^2dot`

Text Solution

Verified by Experts

`cos.(A)/(2) = sqrt((b + c)/(2c))`
`rArr (s(s -a))/(bc) = (b + c)/(2c)` [squaring]
or `2s(2s - 2a) = 2b (b + c)`
or `(b + c + a) (b + c - a) = 2b^(2) + 2bc`
or `(b+ c)^(2) - a^(2) = 2b^(2) + 2bc`
or `c^(2) = a^(2) + b^(2)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.1|12 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.2|8 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

If in a triangle A B C , (2cosA)/a+(cos B)/b+(2cosC)/c=a/(b c)+b/(c a) , then prove that the triangle is right angled.

If a^2+b^2+2a bcostheta=1,c^2+d^2+2c dcostheta=1 and a c+b d+(a d+b c)costheta=0, then prove that a^2+c^2=cos e c^2theta

If tanthetaa n dsectheta are the roots of a x^2+b x+c=0, then prove that a^4=b^2(b^2-4ac)dot

If the length of a focal chord of the parabola y^2=4a x at a distance b from the vertex is c , then prove that b^2c=4a^3dot

A(z_1),B(z_2),C(z_3) are the vertices of the triangle A B C (in clockwise). If /_A B C=pi//4 and A B=sqrt(2)(B C) , then prove that z_2=z_3+i(z_1-z_3)dot

If f(x)=|x+a^2 a b ac a b x+b^2 bc a c b c x+c^2|, t h e n prove that f^(prime)(x)=3x^2+2x(a^2+b^2+c^2)dot

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

In A B C , prove that (a-b^2cos^2C/2+(a+b)^2sin^2C/2=c^2dot

In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B) , then prove that cos 2A,cos2B and cos 2C are in AP.

If a ,b ,a n dc are in G.P. then prove that 1/(a^2-b^2)+1/(b^2)=1/(b^2-c^2)dot