Home
Class 12
MATHS
If the sides a , b and c of A B C are i...

If the sides `a , b` and `c` of `A B C` are in `AdotPdot,` prove that `2sin(A/2)sin(C/2)=sin(B/2)`

Text Solution

Verified by Experts

(i) `2 sin.(A)/(2) sin.(C)/(2) = 2 sqrt(((s-b) (s-c))/(bc)). sqrt(((s -a) (s-b))/(ab))`
`= (2(s-b))/(b) sqrt(((s-a) (s-c))/(ac))`
`= (2s - 2b)/(b). sin.(B)/(2)`
`=(a + c - b)/(b). sin.(B)/(2)`
`= (2b -b)/(b). sin.(B)/(2)` (as a, b, c are in A.P.)
`= sin.(B)/(2)`
(ii) `a cos^(2).(C)/(2) + c cos^(2).(A)/(2) = (a s (s - c))/(ab) + (c s(s -a))/(bc)`
`= (s)/(b) (s - c + s -a)`
`= (a + b+ c)/(2b) b`
`= (2b + b)/(2)`
`= (3b)/(2)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.1|12 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.2|8 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

If the sides a , b and c of ABC are in AdotPdot, prove that acos^2(C/2)+c cos^2(A/2)=(3b)/2

Prove that sin (A+B) sin (A-B)=cos^(2) B-cos^(2) A

In A B C , prove that (a-b^2cos^2C/2+(a+b)^2sin^2C/2=c^2dot

In a triangle ABC, prove that b^(2) sin 2C+c^(2) sin 2B=2bc sin A .

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

Prove that (cosA-cosB)^2+(sin A-sin B)^2=4sin^2((A-B)/2)

Show that cos[(B-C)/2]=(b+c)/a sin(A/2)