Home
Class 12
MATHS
Prove that a^(2) sin 2B + b^(2) sin 2A =...

Prove that `a^(2) sin 2B + b^(2) sin 2A = 4 Delta`

Text Solution

Verified by Experts

`a^(2) sin 2B + b^(2) sin 2A`
`= 4R^(2) [sin^(2) A (2 sin B cos B) + sin^(2) B (2 sin A cos A)]` [using sine rule]
`= 8R^(2) sin A sin B (sin A cos B + sin B cos A)`
`=8R^(2) sin A sin B sin (A + B)`
`= 8R^(2) sin A sin B C = 4Delta`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.1|12 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.2|8 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

prove that a^2sin2B+b^2sin2A=4Delta

In a triangle ABC, prove that b^(2) sin 2C+c^(2) sin 2B=2bc sin A .

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B - sin^(2)C = 2 sin A sin B cos C

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B + sin^(2) C = 2 + 2 cos A cos B cos C

In a Delta ABC, prove that (a^(2) - c^(2))/(b^(2)) = (sin (A - C))/(sin(A + C))

If A + B + C = 180^(@) , prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C

In a Delta ABC, prove that (a sin(B - C))/(b^(2) - c^(2)) = (b sin (C - A))/(c^(2) - a^(2)) = (c sin (A - B))/(a^(2) - b^(2))

Prove that sin^(2)(A + B) - sin^(2)(A - B) = sin 2A sin 2B

If A + B + C = (pi)/(2) , prove that sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C