Home
Class 12
MATHS
Prove that cosA+cosB+cosC=1+r/R...

Prove that `cosA+cosB+cosC=1+r/R`

Text Solution

Verified by Experts

`cosA + cos B + cosC = 1 + 4 sin((A)/(2)) sin((B)/(2)) sin((C)/(2))`
`= 1 + ([4R sin (A//2) sin (B//2) sin(C//2)])/(R) = 1 + (r)/(R)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.1|12 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.2|8 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

Prove that cosA -cosB -cosC =1-4sin(A/2)cos(B/2)cos(C/2) ,if A+B+C= pi

In A B C , prove that cosA+cosB+cosClt=3/2dot

If A+B+C+D = 2pi , prove that : cosA +cosB+cosC+cosD=4 cos, (A+B)/2 cos, (B+C)/(2) cos, (C+A)/2

In a /_\A B C , if tanA/2,tanB/2,tanC/2"are in"AdotPdot, then show that cosA ,cosB ,cosC are in AdotPdot

Show that cosA/a +cosB/b +cosC/c =(a^2 +b^2 +c^2 )/2abc

Prove that ("a c o s"A+b cosB+ccosC)/(a+b+c)=r/Rdot

Prove that ("a c o s"A+b cosB+ccosC)/(a+b+c)=r/Rdot

Prove that (cosA-cosB)^2+(sin A-sin B)^2=4sin^2((A-B)/2)

Prove that: ((cosA+cos B)/(sinA-sinB))^n+((sinA+sinB)/(cosA-cosB))^n={2cot^n((A-B)/2),ifni se v e n0,ifni sod d,

Prove that (sin^2 A )/(cosA) + cos A = sec A.