Home
Class 12
MATHS
If I1, I2, I3 are the centers of escribe...

If `I_1, I_2, I_3` are the centers of escribed circles of ` A B C ,` show that are of ` I_1I_2I_3=(a b c)/(2r)dot`

Text Solution

Verified by Experts

Area `= (I_(1) I_(2) xx I_(3)I_(2) xx I_(1) I_(3))/(4R')`
where R' = Circumradius of `Delta I_(1) I_(2) I_(3)`
`= ((4R cos.(A)/(2)) (4R cos.(B)/(2))(4R cos.(C)/(2)))/(8R)` (`:' Delta ABC` is pedal triangle for `Delta I_(1), I_(2), I_(3)`)
`=8R^(2) cos.(A)/(2) cos.(B)/(2) cos.(C)/(2)`
`= (R^(2) sin A sin B sin C)/(sin.(A)/(2) sin.(B)/(2) sin.(C)/(2))`
`= (R^(2) abc)/(8R^(3) sin.(A)/(2) sin.(B)/(2) sin.(C)/(2))`
`= (abc)/(2(4R sin.(A)/(2) sin.(B)/(2) sin.(C)/(2)))`
`= (abc)/(2r)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.1|12 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.2|8 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

Let A B C be a triangle with incenter I and inradius rdot Let D ,E ,a n dF be the feet of the perpendiculars from I to the sides B C ,C A ,a n dA B , respectively. If r_1,r_2a n dr_3 are the radii of circles inscribed in the quadrilaterals A F I E ,B D I F ,a n dC E I D , respectively, prove that (r_1)/(r-1_1)+(r_2)/(r-r_2)+(r_3)/(r-r_3)=(r_1r_2r_3)/((r-r_1)(r-r_2)(r-r_3))

Let O be the circumcenter, H be the orthocentre, I be the incenter, and I_1, I_2,I_3 be the excenters of acute-angled A B Cdot Column I Column II Angle subtended by O I at vertex A p. |B-C| Angle subtended by H I at vertex A q. |(B-C)/2| Angle subtended by O H at vertex A r. (B+C)/2 Angle subtended by I_2I_3a tI_1 A q. B/2-C

If in triangle A B C ,sumsinA/2=6/5a n dsumI I_1=9 (where I_1,I_2a n dI_3 are excenters and I is incenter, then circumradius R is equal to (15)/8 (b) (15)/4 (c) (15)/2 (d) 4/(12)

If A^2-A+I=0, then the invers of A is A^(-2) b. A+I c. I-A d. A-I

If A^2-A +I = 0 , then the inverse of A is: (A) A+I (B) A (C) A-I (D) I-A

Let the incircle with center I of A B C touch sides BC, CA and AB at D, E, F, respectively. Let a circle is drawn touching ID, IF and incircle of A B C having radius r_2dot similarly r_2a n dr_3 are defined. Prove that (r_1)/(r-r_1)dot(r_2)/(r-r_2)dot(r_3)/(r-r_3)=(a+b+c)/(8R)

Show that the complex numbers 3 + 2i, 5i, -3 + 2i, and -i form a square.

Let S_(1)=underset(0 le i lt j le 100)(sumsum)C_(i)C_(j) , S_(2)=underset(0 le j lt i le 100)(sumsum)C_(i)C_(j) and S_(3)=underset(0 le i = j le 100)(sumsum)C_(i)C_(j) where C_(r ) represents cofficient of x^(r ) in the binomial expansion of (1+x)^(100) If S_(1)+S_(2)+S_(3)=a^(b) where a , b in N , then the least value of (a+b) is

If z_1 = 4 - 7i , z_2 = 2 + 3i and z_3 = 1 + i show that z_1 + (z_2 + z_3) = (z_1 + z_2)+z_3