Home
Class 12
MATHS
In triangle ABC, if cos^(2)A + cos^(2)B ...

In triangle ABC, if `cos^(2)A + cos^(2)B - cos^(2) C = 1`, then identify the type of the triangle

Text Solution

Verified by Experts

The correct Answer is:
Right angled triangle

`cos^(2) A + cos^(2) B - cos^(2) C = 1`
or `1 - sin^(2) A + 1 - sin^(2) B - 1 + sin^(2) C = 1`
or `sin^(2) A + sin^(2) B = sin^(2) C rArr a^(2) + b^(2) = c^(2)`
Thus, the triangle is right angled at C
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.2|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

If cos^(2)A+cos^(2)B+cos^(2)C=1 , then triangle ABC is

In a triangle ABC, sin^(2)A + sin^(2)B + sin^(2)C = 2 , then the triangle is

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceless

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to

In DeltaABC, bc=2b^(2)cos A+2c^(2)cos A-4bc cos^(2)A , then Delta ABC is

If in a triangle a cos^2C/2+ c cos^2A/2=(3b)/2, then find the relation between the sides of the triangle.

In a triangle ABC , (c^2 +a^2 -b^2)/(2ca) is:

If in a triangle A B C , (2cosA)/a+(cos B)/b+(2cosC)/c=a/(b c)+b/(c a) , then prove that the triangle is right angled.

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.