Home
Class 12
MATHS
Prove that b^(2) cos 2 A - a^(2) cos 2B ...

Prove that `b^(2) cos 2 A - a^(2) cos 2B = b^(2) -a^(2)`

Text Solution

Verified by Experts

`b^(2) cos 2A - a^(2) cos 2B`
`=b^(2) (1-2 sin^(2)A) - a^(2) (1 - 2 sin^(2) B)`
`= b^(2) - a^(2) - 2 (b^(2) sin^(2) B)`
`= b^(2) -a^(2) -2 (b^(2) sin^(2) A - a^(2) sin^(2) B) = b^(2) - a^(2) " " ( :' a sin B = b sin A)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.2|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

Prove that cos (A + B) cos (A - B) = cos^(2) A - sin^(2) B = cos^(2) B- sin^(2) A

Prove that cos (A + B) cos (A - B) = cos^(2) B - sin^(2) A

Prove that cos2A=cos^2 A -sin^2 A

Prove that sin (A+B) sin (A-B)=cos^(2) B-cos^(2) A

If triangleABC is a right triangle and if angleA=pi/2 , then prove that (i) cos^(2) B+cos^(2)C=1 (ii) sin^(2) B+sin^(2) C=1 cos B-cos C=-1+2 sqrt2 cos""B/2sin ""C/2

In Delta ABC , prove that (a - b)^(2) cos^(2).(C)/(2) + (a + b)^(2) sin^(2).(C)/(2) = c^(2)

If A+B+C=pi prove that cos^(2) A+cos^(2) B+cos^(2) C=1 - 2cos A cos B cos C .

Prove that sin^2 A cos^2 B+cos^2 A sin^2 B+cos^2 A cos^2 B+sin^2 A sin^2 B=1

Cosine formula: With usual notations in any triangle ABC Prove that : cos A= (b^(2)+c^(2)-a^(2))/(2bc) .

In any triangle prove that a^2 =(b+c)^2 sin^2 (A/2) +(b-c)^2 cos^2 (A/2)