Home
Class 12
MATHS
For any triangle ABC, prove that (b^2 c^...

For any triangle ABC, prove that `(b^2 c^2) cot"A"+"(c^2 a^2)"cot"B""+""(a^2 b^2)" cot"C" "="\ "0`

Text Solution

Verified by Experts

Since `a = 2R sin A, b = 2R sin B, and c = 2R sin C`, we have
`(b^(2) -c^(2)) cot A = 4R^(2) (sin^(2) B - sin^(2) C) cot A`
`=4R^(2) sin(B + C) sin (B - C) cot A`
`= 4R^(2) sin A sin (B - C) (cos A)/(sin A)`
`= -4R^(2) sin (B - C) cos (B + C) " " ( :' cos A = - cos (B + C))`
`= -2R^(2) [2 sin (B - C) cos (B + C)]`
`= -2R^(2) [sin 2B - sin 2C]`(i)
Similarly, `(c^(2) -a^(2)) cot B = - 2R^(2) [sin 2 C - sin 2A]` (ii)
and `(a^(2) -b^(2)) cot C = -2R^(2) [sin 2A - sin 2B]` (iii)
Adding Eqs. (i), (ii), and (iii), we get
`(b^(2) - c^(2)) cot A + (c^(2) - a^(2)) cot B + (a^(2) - b^(2)) cot C = 0`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.2|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

In any /_\ A B C , prove that (b^2-c^2)cotA+(c^2-a^2)cotB+(c^a-b^2)cotC=0

In a triangle ABC, prove that (b + c)/(a) le cosec.(A)/(2)

In triangle ABC , a (b^2 +c^2 ) cos A + b (c^2 +a^2 ) cos B + c(a^2 +b^2 ) cos C is equal to

In a triangle ABC, prove that b^(2) sin 2C+c^(2) sin 2B=2bc sin A .

In any triangle prove that a^2 =(b+c)^2 sin^2 (A/2) +(b-c)^2 cos^2 (A/2)

In a triangle ABc , if r^2cot(A/2) cot(B/2) cot(C/2)=

In a triangle A B C prove that a//(a+c)+b//(c+a)+c//(a+b)<2

In a triangle ABC , (c^2 +a^2 -b^2)/(2ca) is:

In any triangle ABC, prove that a cos A+b cos B +c cos C =(8 triangle^(2))/(abc) .

Prove that (b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)+(a^2+b^2)/(a+b)> a+b+c