Home
Class 12
MATHS
If in a triangle ABC, (bc)/(2 cos A) = b...

If in a triangle `ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A` then prove that the triangle must be isosceless

Text Solution

Verified by Experts

We have `(bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A = a^(2)`
`rArr cos A = (bc)/(2a^(2))`
`rArr (b^(2) + c^(2) -a^(2))/(2bc) = (bc)/(2a^(2))`
`rArr b^(2) c^(2) = a^(2) (b^(2) + c^(2) - a^(2))`
`rArr (a^(2) - b^(2)) (a^(2) - c^(2)) = 0`
`rArr a = b " or " a = c`
Hence, triangle is isosceles
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.4|5 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.1|12 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

If in a triangle A B C , (2cosA)/a+(cos B)/b+(2cosC)/c=a/(b c)+b/(c a) , then prove that the triangle is right angled.

In a triangle ABC, prove that b^(2) sin 2C+c^(2) sin 2B=2bc sin A .

In triangle ABC, if cos^(2)A + cos^(2)B - cos^(2) C = 1 , then identify the type of the triangle

In a triangle ABC , a =2,b=3 and sin A = (2)/(3) then cos C=

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

in a triangle ABC , (b+c) ( bc ) cos A + (a +c) (ac) cos B + ( a+b) (ab) cos C Is

In a triangle ABC, prove that (b + c)/(a) le cosec.(A)/(2)

In DeltaABC, bc=2b^(2)cos A+2c^(2)cos A-4bc cos^(2)A , then Delta ABC is

In triangle ABC , a (b^2 +c^2 ) cos A + b (c^2 +a^2 ) cos B + c(a^2 +b^2 ) cos C is equal to

In a Delta ABC, if cos C = (sin A)/(2 sin B) , show that the triangle is isosceles.