Home
Class 12
MATHS
Prove that bc cos^(2).(A)/(2) + ca cos^(...

Prove that `bc cos^(2).(A)/(2) + ca cos^(2).(B)/(2) + ab cos^(2).(C)/(2) = s^(2)`

Text Solution

Verified by Experts

The correct Answer is:
2

`cos.(A)/(2) = sqrt((s(s -a))/(bc))`
or `bc cos^(2).(A)/(2) = s (s -a)`
or `bc cos^(2).(A)/(2) + ca cos^(2).(B)/(2) + ab cos^(2).(C)/(2)`
`= s (3s - (a + b + c)) = s (3s - 2s) = s^(2)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.5|7 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.6|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.3|3 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

In Delta ABC , prove that (a - b)^(2) cos^(2).(C)/(2) + (a + b)^(2) sin^(2).(C)/(2) = c^(2)

Prove that cos^(2)x + cos^(2)(x + (pi)/(3)) + cos^(2) (x - (pi)/(3)) = (3)/(2)

Prove that cos^(-1){(1+x)/2}=(cos^(-1)x)/2

Prove that cos2A=cos^2 A -sin^2 A

Prove that cos (A + B) cos (A - B) = cos^(2) A - sin^(2) B = cos^(2) B- sin^(2) A

Prove that cos (A + B) cos (A - B) = cos^(2) B - sin^(2) A

Prove that b^(2) cos 2 A - a^(2) cos 2B = b^(2) -a^(2)

If A+B+C = pi show that cos^2 (A/2)-cos^2 (B/2)-cos^2 (C/2)=-2sin(A/2)cos(B/2)cos(C/2)

Prove that sin (A+B) sin (A-B)=cos^(2) B-cos^(2) A

Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) ]:} =4a^(2) b^(2) c^(2)