Home
Class 12
MATHS
In a triangle ABC, (a)/(b) = (2)/(3) and...

In a triangle `ABC, (a)/(b) = (2)/(3) and sec^(2) A = (8)/(5)`. Find the number of triangle satisfying these conditions

Text Solution

Verified by Experts

The correct Answer is:
two

We have `(a)/(b) = (b)/(3) = k` and
`sec^(2) A = (8)/(5)`
`rArr cos^(2) A = (5)/(8)`
`rArr (5)/(8) = ((9k^(2) + c^(2) - 4k^(2))/(6kc))^(2) = ((5k^(3) + c^(2))/(6kc))^(2)`
`rArr 45k^(2) c^(2) = 50 k^(4) + 20 k^(2) c^(2) + 2c^(4)`
`rArr 2c^(4) - 25 k^(2) c^(2) + 50k^(4) = 0`
`rArr c^(2) = (25 k^(2) +- sqrt(625 k^(4) - 400 k^(4)))/(4)`
`= (25k^(2) +- 15 k^(2))/(4) = 10 k^(2), (5)/(2) k^(2)`
There are two possible valid values of `c^(2)`. Hence there exist two triange satisfying the given conditions
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.7|4 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.8|7 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.5|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC , a =2,b=3 and sin A = (2)/(3) then cos C=

In a triangle ABC , (c^2 +a^2 -b^2)/(2ca) is:

In a triangle ABC, prove that (b + c)/(a) le cosec.(A)/(2)

If in a triangle ABC , a=5,b=4 ,A = (pi)/( 2) +B then C

In a triangle ABC if tan.(A)/(2)tan.(B)/(2)=(1)/(3) and ab = 4, then the value of c can be

In a triangle ABC, sin^(2)A + sin^(2)B + sin^(2)C = 2 , then the triangle is

In triangle ABC, if cos^(2)A + cos^(2)B - cos^(2) C = 1 , then identify the type of the triangle

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceless

In a triangle ABC, prove that b^(2) sin 2C+c^(2) sin 2B=2bc sin A .