Home
Class 12
MATHS
In Delta ABC, (sin A (a - b cos C))/(sin...

In `Delta ABC, (sin A (a - b cos C))/(sin C (c -b cos A))=`

A

`-2`

B

`-1`

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
D

`(sinA (a -b cos C))/(sinC (c -b cos A))`
`= (sin A (b cos C + c cos B - cos C))/(sin C (a cos B + b cos A - b cos A))`
`= (sin A (c cos B))/(sin C (a cos B))`
`=1 " " ("as " c sin A = a sin C)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise (Multiple)|24 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise (Comprehension)|34 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.11|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC , 2 sinA cos B + 2 sin B cos C + 2 sin cos A = sin A + sin B + sin C, then Delta ABC is

In DeltaABC , if sin A + sin B + sin C= 1 + sqrt2 and cos A+cos B+cosC =sqrt2 then the triangle is

Knowledge Check

  • in a triangle ABC , ( cos A)/(a) = (cos B )/( b) = ( cos C )/( c ) if a=(1 )/( sqrt(6)) then the area of the triangle ( in square units ) is

    A
    `(1)/( 24)`
    B
    ` (1)/(8 sqrt(3))`
    C
    ` (1)/(8)`
    D
    `(1)/( 24 sqrt(3))`
  • Similar Questions

    Explore conceptually related problems

    In a Delta ABC sin Asin B sin C <= (3sqrt3)/8

    In a Delta ABC, prove that (a sin(B - C))/(b^(2) - c^(2)) = (b sin (C - A))/(c^(2) - a^(2)) = (c sin (A - B))/(a^(2) - b^(2))

    In Delta ABC , prove that (a - b)^(2) cos^(2).(C)/(2) + (a + b)^(2) sin^(2).(C)/(2) = c^(2)

    In a Delta ABC, if (i)sin (A)/(2) sin"" (B)/(2) sin"" (C )/(2) gt 0 (ii)sin AsinBsinC gt 0

    In a Delta ABC, prove that a ( cos B + cos C) = 2 (b + c) sin^(2)""(A)/(2)

    In a triangleABC, " prove that "(sin B)/(sin C)=(c-a cos B)/(b-a cos C)

    If in a triangle ABC, (1 + cos A)/(a) + (1 + cos B)/(b) + (1+ cos C)/(c) = (k^(2) (1 + cos A) (1 + cos B) (1 + cos C))/(abc) , then k is equal to