Home
Class 12
MATHS
If in A B C ,A=pi/7,B=(2pi)/7,C=(4pi)/7...

If in ` A B C ,A=pi/7,B=(2pi)/7,C=(4pi)/7` then `a^2+b^2+c^2` must be

A

`R^(2)`

B

`3R^(2)`

C

`4R^(2)`

D

`7R^(2)`

Text Solution

Verified by Experts

The correct Answer is:
D

`a^(2) + b^(2) + c^(2) = 4R^(2) (sin^(2) A + sin^(2) B + sin^(2)C)`
`= 2R^(2) (3 - (cos 2A + cos 2B + cos 2C))`
Now, `cos 2A + cos 2B + cos 2C`
`= cos.(2pi)/(7) + cos.(4pi)/(7) + cos.(8pi)/(7)`
`= cos.(2pi)/(7) + cos.(4pi)/(7) + cos.(6pi)/(7)`
`= (sin.(3pi)/(7))/(sin.(pi)/(7)) cos.(4pi)/(7)`
`= (-2 sin.(3pi)/(7) cos.(3pi)/(7))/(2 sin.(pi)/(7))`
`= (-sin.(6pi)/(7))/(2sin.(pi)/(7)) = (-1)/(2)`
`:. a^(2) +b^(2) + c^(2) = 2R^(2) (3-((-1)/(2))) = 7R^(2)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise (Multiple)|24 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise (Comprehension)|34 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise 5.11|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

If in a triangle ABC , a=5,b=4 ,A = (pi)/( 2) +B then C

In a A B C ,ifA B=x , B C=x+1,/_C=pi/3 , then the least integer value of x is 6 (b) 7 (c) 8 (d) none of these

Find the value of cos(2pi)/7+cos(4pi)/7+cos(6pi)/7

If (3-tan^2(pi/7))/(1-tan^2(pi/7))=kcos(pi/7) then the value of k is (a)1 (b) 2 (c) 3 (d) 4

In triangle A B C , if r_1=2r_2=3r_2, then a : b is equal to 5/4 (b) 4/5 (c) 7/4 (d) 4/7

In an acute angled triangle A B C ,r+r_1=r_2+r_3a n d/_B >pi/3, then b+2c<2a<2b+2c b+4c<4a<2b+4c b+4c<4a<4b+4c b+3c<3a<3b+3c

If A + B + C = (pi)/(2) , prove that cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B cos C

If A + B + C = (pi)/(2) , prove that sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C

If [(cos\ (2pi)/7,-sin\ (2pi)/7),(sin\ (2pi)/7,cos\ (2pi)/7)]^k=[(1,0),(0,1)], then the least positive integral value of k , is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

CENGAGE-PROPERTIES AND SOLUTIONS OF TRIANGLE-Exercise (Single)
  1. In A B C ,P is an interior point such that /P A B=10^0/P B A=20^0,/P ...

    Text Solution

    |

  2. In DeltaABC, if AB = c is fixed, and cos A + cosB + 2 cos C = 2 then t...

    Text Solution

    |

  3. If in A B C ,A=pi/7,B=(2pi)/7,C=(4pi)/7 then a^2+b^2+c^2 must be

    Text Solution

    |

  4. In Delta ABC, "cot"(A)/(2) + "cot" (B)/(2) + "cot" (C)/(2) is equal to

    Text Solution

    |

  5. In Delta ABC, (cot. (A)/(2) + cot. (B)/(2)) (a sin.^(2) (B)/(2) + b si...

    Text Solution

    |

  6. In a right-angled isosceles triangle, the ratio of the circumradius an...

    Text Solution

    |

  7. In the given figure, what is the radius of the inscribed semicircle ha...

    Text Solution

    |

  8. In A B C ,A=(2pi)/3,b-c=3sqrt(3)c m and area of A B C=(9sqrt(3))/2c ...

    Text Solution

    |

  9. In triangle A B C , let /c=pi/2dot If r is the inradius and R is circu...

    Text Solution

    |

  10. In the given figure, AB is the diameter of the circle, centered at O. ...

    Text Solution

    |

  11. In triangle ABC, if P, Q, R divides sides BC, AC, and AB, respectively...

    Text Solution

    |

  12. If the angles of a triangle are 30^0a n d45^0 and the included side is...

    Text Solution

    |

  13. In triangle A B C , base B C and area of triangle are fixed. The locus...

    Text Solution

    |

  14. Let the area of triangle ABC be (sqrt3 -1)//2, b = 2 and c = (sqrt3 -1...

    Text Solution

    |

  15. In triangleABC ,Delta=6, abc=60, r=1 Then the value of 1/a+1/b+1/c is ...

    Text Solution

    |

  16. Triangle ABC is isosceles with AB=AC and BC=65cm. P is a point on BC s...

    Text Solution

    |

  17. In an equilateral triangle, the inradius, circumradius, and one of the...

    Text Solution

    |

  18. In triangle A B C , if cosA+cosB+cosC=7/4, t h e n R/r is equal to 3/4...

    Text Solution

    |

  19. If two sides of a triangle are roots of the equation x^2-7x+8=0 and th...

    Text Solution

    |

  20. Given b=2,c=sqrt(3),/A=30^0 , then inradius of A B C is (sqrt(3)-1)/2...

    Text Solution

    |