Home
Class 12
MATHS
Let O be a point inside DeltaABC such th...

Let O be a point inside `DeltaABC` such that
`angleOAB = angleOBC = angle OCA = theta`
`cosec^(2) A + cosec^(2)B + cosec^(2)C` is equal to

A

`cot^(2) theta`

B

`cosec^(2) theta`

C

`tan^(2) theta`

D

`sec^(2) theta`

Text Solution

Verified by Experts

The correct Answer is:
B


Applying sine rule in `DeltaAOB`, we have
`(OA)/(sin angleABO) = (AB)/(sin angle AOB)`
or `OA = (c sin angleABO)/(sin angleAOB) = (c sin (B - theta))/(sin B)`...(i)
`[ :' angle ABO = B - theta, angle AOB = 180^(@) - theta - angleABO = 180^(@) -B]`
Again in `DeltaAOC`, we have
`(OA)/(sin angleACO) = (AC)/(sin angleAOC)`
`rArr OA = (b sin angleACO)/(sin angleAOC) = (b sin theta)/(sin A)`
`[ :' angleOAC = A - theta, angleAOC = 180^(@) - theta - angleOAC = 180^(@)]`
From Eqs. (i) and (ii), we have
`(c sin (B - theta))/(sin B) = (b sin theta)/(sin A)`
or `c sin A (B - theta) = b sin theta sin B`
`= b sin theta sin (A +C)`
or `2R sin C sin A (sin B cos theta - cos B sin theta)`
`= 2R sin B sin theta (sin A cos C + cos A sin C)`
Dividing both sides by `2R sin theta sin A sin B sin C`, we get
`cot theta - cot B = cot C + cot A`
or `cot theta = cot A + cot B + cot C`
Squaring both sides, we have
`cot^(2) theta = cot^(2) A + cot^(2) B + cot^(2)C + 2(cotA cot B + cot B cot C + cot C cot A)`
or `cosec^(2) theta - 1 = (cosec^(2) A -1) + (cosec^(2) B -1) + (cosec^(2) C -1) + 2`
[since in `DeltaABC, cot A cot B + cot B cot C + cot C cot A = 1`]
or `cosec^(2) theta = cosec^(2) A + cosec^(2) B + cosec^(2)C`
Area of triangle ABC,
`Delta = Delta_(1) + Delta_(2) + Delta_(3)`
`=(1)/(2) [a OB + b OC + c OA] sin theta`
`=(1)/(4) tan theta [2 a OB cos theta + 2b OC cos theta+ 2c OA cos theta]`
`=(1)/(4) tan theta [(a^(2) + x^(2) -y^(2)) + (b^(2) + y^(2) - z^(2)) + (c^(2) + z^(2) - x^(2)]`
`= (1)/(4) tan theta [a^(2) + b^(2) + c^(2)]`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise (Numerical)|22 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise (Multiple)|24 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

Let O be a point inside DeltaABC such that angleOAB = angleOBC = angle OCA = theta Area of DeltaABC is equal to

cosec ^(2) (5 x - 7 )

The value of cosec^(2)60-1 is equal to…………..

the value of sec^2 theta + cosec^2 theta is equal to

the value of sec ""(2pi)/(3) + cosec "" ( 5 pi)/(6) is equal to

"cosec"^(2) (7 - 11x)

Evaluate intsec^(2)x"cosec"^(2)xdx .

int (x^(2) + cos ^(2) x)/( x^(2) + 1)cosec^(2) x dx is

CENGAGE-PROPERTIES AND SOLUTIONS OF TRIANGLE-Exercise (Comprehension)
  1. Let ABC be an acute angled triangle with orthocenter H.D, E, and F are...

    Text Solution

    |

  2. Let O be a point inside DeltaABC such that angleOAB = angleOBC = ang...

    Text Solution

    |

  3. Let O be a point inside DeltaABC such that angleOAB = angleOBC = ang...

    Text Solution

    |

  4. Let O be a point inside DeltaABC such that angleOAB = angleOBC = ang...

    Text Solution

    |

  5. Given an isoceles triangle with equal side of length b and angle alpha...

    Text Solution

    |

  6. Given an isoceles triangle with equal side of length b and angle alpha...

    Text Solution

    |

  7. Given an isoceles triangle with equal side of length b and angle alpha...

    Text Solution

    |

  8. In Fig. the incircle of △ABC, touches the sides BC, CA and AB at D,...

    Text Solution

    |

  9. Incrircle of A B C touches the sides BC, CA and AB at D, E and F, res...

    Text Solution

    |

  10. Incircle of DeltaABC touches the sides BC, AC and AB at D, E and F, re...

    Text Solution

    |

  11. Internal bisectors of DeltaABC meet the circumcircle at point D, E, an...

    Text Solution

    |

  12. Internal bisectors of DeltaABC meet the circumcircle at point D, E, an...

    Text Solution

    |

  13. Internal bisectors of DeltaABC meet the circumcircle at point D, E, an...

    Text Solution

    |

  14. The area of any cyclic quadrilateral ABCD is given by A^(2) = (s -a) (...

    Text Solution

    |

  15. The area of any cyclic quadrilateral ABCD is given by A^(2) = (s -a) (...

    Text Solution

    |

  16. The area of any cyclic quadrilateral ABCD is given by A^(2) = (s -a) (...

    Text Solution

    |

  17. In DeltaABC, R, r, r(1), r(2), r(3) denote the circumradius, inradius,...

    Text Solution

    |

  18. In DeltaABC, R, r, r(1), r(2), r(3) denote the circumradius, inradius,...

    Text Solution

    |

  19. In DeltaABC, R, r, r(1), r(2), r(3) denote the circumradius, inradius,...

    Text Solution

    |

  20. In DeltaABC, P,Q, R are the feet of angle bisectors from the vertices ...

    Text Solution

    |