Home
Class 12
MATHS
Let O be a point inside DeltaABC such th...

Let O be a point inside `DeltaABC` such that
`angleOAB = angleOBC = angle OCA = theta`
Area of `DeltaABC` is equal to

A

`((a^(2) + b^(2) + c^(2))/(4)) tan theta`

B

`((a^(2) + b^(2) + c^(2))/(4)) cot theta`

C

`((a^(2) + b^(2) + c^(2))/(2)) tan theta`

D

`((a^(2) + b^(2) + c^(2))/(2)) cot theta`

Text Solution

Verified by Experts

The correct Answer is:
A


Applying sine rule in `DeltaAOB`, we have
`(OA)/(sin angleABO) = (AB)/(sin angle AOB)`
or `OA = (c sin angleABO)/(sin angleAOB) = (c sin (B - theta))/(sin B)`...(i)
`[ :' angle ABO = B - theta, angle AOB = 180^(@) - theta - angleABO = 180^(@) -B]`
Again in `DeltaAOC`, we have
`(OA)/(sin angleACO) = (AC)/(sin angleAOC)`
`rArr OA = (b sin angleACO)/(sin angleAOC) = (b sin theta)/(sin A)`
`[ :' angleOAC = A - theta, angleAOC = 180^(@) - theta - angleOAC = 180^(@)]`
From Eqs. (i) and (ii), we have
`(c sin (B - theta))/(sin B) = (b sin theta)/(sin A)`
or `c sin A (B - theta) = b sin theta sin B`
`= b sin theta sin (A +C)`
or `2R sin C sin A (sin B cos theta - cos B sin theta)`
`= 2R sin B sin theta (sin A cos C + cos A sin C)`
Dividing both sides by `2R sin theta sin A sin B sin C`, we get
`cot theta - cot B = cot C + cot A`
or `cot theta = cot A + cot B + cot C`
Squaring both sides, we have
`cot^(2) theta = cot^(2) A + cot^(2) B + cot^(2)C + 2(cotA cot B + cot B cot C + cot C cot A)`
or `cosec^(2) theta - 1 = (cosec^(2) A -1) + (cosec^(2) B -1) + (cosec^(2) C -1) + 2`
[since in `DeltaABC, cot A cot B + cot B cot C + cot C cot A = 1`]
or `cosec^(2) theta = cosec^(2) A + cosec^(2) B + cosec^(2)C`
Area of triangle ABC,
`Delta = Delta_(1) + Delta_(2) + Delta_(3)`
`=(1)/(2) [a OB + b OC + c OA] sin theta`
`=(1)/(4) tan theta [2 a OB cos theta + 2b OC cos theta+ 2c OA cos theta]`
`=(1)/(4) tan theta [(a^(2) + x^(2) -y^(2)) + (b^(2) + y^(2) - z^(2)) + (c^(2) + z^(2) - x^(2)]`
`= (1)/(4) tan theta [a^(2) + b^(2) + c^(2)]`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise (Numerical)|22 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise Exercise (Multiple)|24 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROPERTIES OF TRIANGLE, HEIGHT AND DISTANCE

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

Let O be a point inside DeltaABC such that angleOAB = angleOBC = angle OCA = theta cosec^(2) A + cosec^(2)B + cosec^(2)C is equal to

D is a point on side BC of DeltaABC such that , angleADC=angleBAC . Show that AC^(2)= BCxxDC .

Let O be an interior point of DeltaABC such that bar(OA)+2bar(OB) + 3bar(OC) = 0 . Then the ratio of a DeltaABC to area of DeltaAOC is

Let 'P' be an interior point of Delta ABC . If angle A=45^(@), angle B=60^(@) and angle C=75^(@) . If X=area of Delta PBC,Y= area of Delta PAC and Z = area of Delta PAB , then which of the following ratios is/are true ?

O is any point inside a triangle ABC. The bisector of angle AOB, angle BOC and angle COA meet the sides AB, BC and CA in point D, E and F respectively. Show that AD xx BE xx CF= DB xx EC xx FA

Find all the three angles of the DeltaABC .

In DeltaABC , P is a point on side BC such that BP = 4 cm and PC = 7 cm. A(DeltaAPC):A(DeltaABC) = ………………

Let 0-=(0,0),A-=(0,4),B-=(6,0)dot Let P be a moving point such that the area of triangle P O A is two times the area of triangle P O B . The locus of P will be a straight line whose equation can be

Let n in Z and DeltaABC be a right tirangle with angle at C . If sin A and sin B are the roots of the equadratic equation (5n + 8) x^(2) - (7n - 20) x + 120 = 0 , then find the value of n.

Find the angle theta whose cosine is equal to its tangent.

CENGAGE-PROPERTIES AND SOLUTIONS OF TRIANGLE-Exercise (Comprehension)
  1. Let O be a point inside DeltaABC such that angleOAB = angleOBC = ang...

    Text Solution

    |

  2. Let O be a point inside DeltaABC such that angleOAB = angleOBC = ang...

    Text Solution

    |

  3. Let O be a point inside DeltaABC such that angleOAB = angleOBC = ang...

    Text Solution

    |

  4. Given an isoceles triangle with equal side of length b and angle alpha...

    Text Solution

    |

  5. Given an isoceles triangle with equal side of length b and angle alpha...

    Text Solution

    |

  6. Given an isoceles triangle with equal side of length b and angle alpha...

    Text Solution

    |

  7. In Fig. the incircle of △ABC, touches the sides BC, CA and AB at D,...

    Text Solution

    |

  8. Incrircle of A B C touches the sides BC, CA and AB at D, E and F, res...

    Text Solution

    |

  9. Incircle of DeltaABC touches the sides BC, AC and AB at D, E and F, re...

    Text Solution

    |

  10. Internal bisectors of DeltaABC meet the circumcircle at point D, E, an...

    Text Solution

    |

  11. Internal bisectors of DeltaABC meet the circumcircle at point D, E, an...

    Text Solution

    |

  12. Internal bisectors of DeltaABC meet the circumcircle at point D, E, an...

    Text Solution

    |

  13. The area of any cyclic quadrilateral ABCD is given by A^(2) = (s -a) (...

    Text Solution

    |

  14. The area of any cyclic quadrilateral ABCD is given by A^(2) = (s -a) (...

    Text Solution

    |

  15. The area of any cyclic quadrilateral ABCD is given by A^(2) = (s -a) (...

    Text Solution

    |

  16. In DeltaABC, R, r, r(1), r(2), r(3) denote the circumradius, inradius,...

    Text Solution

    |

  17. In DeltaABC, R, r, r(1), r(2), r(3) denote the circumradius, inradius,...

    Text Solution

    |

  18. In DeltaABC, R, r, r(1), r(2), r(3) denote the circumradius, inradius,...

    Text Solution

    |

  19. In DeltaABC, P,Q, R are the feet of angle bisectors from the vertices ...

    Text Solution

    |

  20. In DeltaABC, P,Q, R are the feet of angle bisectors from the vertices ...

    Text Solution

    |