Home
Class 12
MATHS
If a,b,c,d are in geometric sequence th...

If a,b,c,d are in geometric sequence then prove that `(b-c)^(2) +(c-a)^(2) -(d-b)^(2)=(a-d)^2`

Text Solution

Verified by Experts

`asin^2x+b(1-sin^2x)=c`
`:. (a-b)sin^2x=c-b`
Also, `a(1-cos^2x)+bcos^2x=c`
`:. (b-a)cos^2x=c-a`
`:. tan^2x=(c-a)/(b-d)`
Similarly, `tan^2y=(d-a)/(b-d)`
`:. a^2/b^2=tan^2y/tan^2x=(d-a)/(b-d)xx(c-a)/(b-c)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.3|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.4|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.1|8 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If a,b,c,d are in a geometric sequences, then show that (a-b+c) (b+c+d) = ab + bc + cd.

If a,b,c and the d are in H.P then find the vlaue of (a^(-2)-d^(-2))/(b^(-2)-c^(-2))

If a ,b ,ca n dd are in H.P., then prove that (b+c+d)//a ,(c+d+a)//b ,(d+a+b)//c and (a+b+c)//d , are in A.P.

If A=[(a,b),(c,d)] , where a, b, c and d are real numbers, then prove that A^(2)-(a+d)A+(ad-bc) I=O . Hence or therwise, prove that if A^(3)=O then A^(2)=O

If a ,b, c ,d are in G.P, then (b-c)^2+(c-a)^2+(d-b)^2 is equal to

If a, b, c, d and p are different real numbers such that (a^2 + b^2 + c^2)p^2 – 2(ab + bc + cd) p + (b^2 + c^2 + d^2) le 0 , then show that a, b, c and d are in GP.

Prove that ((a+b+c)(b+c-a)(c+a-b)(a+b-c))/(4b^2c^2)=sin^2A

If a ,b ,c ,da n dp are distinct real numbers such that (a^2+b^2+c^2)p^2-2(a b+b c+c d)p+(b^2+c^2+d^2)lt=0, then prove that a ,b ,c , d are in G.P.

If a, b, d and p are distinct non - zero real numbers such that (a^2+b^2 + c^2) p^2 - 2(ab+bc+cd)p+(b^2 + c^2 +d^2) le 0 then n. Prove that a, b, c, d are in G. P and ad = bc

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2) = (ab+bc+cd)^2