Home
Class 12
MATHS
Find the range of f(x)=sin(cosx)....

Find the range of `f(x)=sin(cosx).`

Text Solution

Verified by Experts

The correct Answer is:
`[-sin1, sin 1]`

`f(x)=sin(cosx)`
For `AA x in R, theta=cosx in [-1,1]`
Since `sintheta`is increasing from `-pi//2" to"pi//2`, the maximum value occurs at `thet=1` and the minimum value occurs at ` theta=-1`. Hence, rangs is `[-sin1, sin1]`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.6|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.4|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=|sinx|+|cosx|,x in Rdot

Find the range of f(x)=sqrt(sin(cos x))+sqrt(cos(sin x)) .

Find the range of f(x)=1/(2cosx-1)

Find the range of f(x)=1/(4cosx-3)dot

Find the range of f(x)=1/((cosx-3)^2+(sinx+4)^2)

Find the range of f(x) =8/(sinx+3)

Find the range of f(x)=1/(5sinx-6)

find the range of f(x)=(1)/(1+4cosx)

Find the range of f(x)=sin^2x-3sinx+2

Find the range of f(x)=sin^2x-sinx+1.