Home
Class 12
MATHS
Find the tange of f(x)=cos^4x+sin^2x-1....

Find the tange of `f(x)=cos^4x+sin^2x-1`.

Text Solution

Verified by Experts

The correct Answer is:
[-1/4, 0]

`f(x)=cos^4x+sin^2x-1`
`=cos^4x+1-cos^2x-1`
`=cos^4-cos^2x`
`=(cos^2x-1//2)^2-1//4`
Now, `0lecos^2xle1`
`rArr -1//2cos^2x-1//2le1//2`
`rArr-1//4le(cos^2x-1//2)^2-1//4le0`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.6|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.4|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=sin^2x-sinx+1.

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot

Find the range of f(x)=(2sin^2x+2sinx+3)/(sin^2x+sinx+1)

Find the range of f(x)=sqrt((cos^(-1)sqrt((1-x^2))-sin^(-1)x))

Find the range of f(x)=cos^(-1)((sqrt(1+2x^2))/(1+x^2))

Find the range of f(x)=sqrt(sin(cos x))+sqrt(cos(sin x)) .

Find the domain of f(x)=sqrt(cos^(-1)x-sin^(-1)x)