Home
Class 12
MATHS
Find the minimum value of the function ...

Find the minimum value of the function
`f(x)=(1+sinx)(1+cosx),AAx inR`.

Text Solution

Verified by Experts

The correct Answer is:
0

Since `0le1+sinxle2" and "0le+cosxle2`,
minium value of f(x) is 0, when any one of `(1+sinx)" or "(1+cosx)` is zero.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.6|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.4|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Find sum of maximum and minimum values of the function f(x) = sin^2x + 8cosx - 7

Find the minimum value of the function f(x)=(pi^2)/(16cot^(-1)(-x))-cot^(-1)x

Find the domain of the function f(x)=1/(1+2sinx)

Find the imtegrals of the functions (cosx-sinx)/(1+sin2x)

Find local minimum value of the function f given by f (x) = 3 + |x|, x in R.

Find the absolute maximum and minimum values of the function f given by f(x) = cos^(2)x+sinx, x in [ 0,pi]

Integrate the functions e^(x)((1+sinx)/(1+cosx))

Integrate the functions (sinx)/(1+cosx)

Find the maximum and the minimum values, if any, of the function given by f(x) = x,x in (0,1)