Home
Class 12
MATHS
Prove that (sintheta+cosectheta)^2+(cost...

Prove that `(sintheta+cosectheta)^2+(costheta+sectheta)^2ge9`.

Text Solution

Verified by Experts

`(sintheta+cosectheta)^2+(costheta+sectheta)^2`
`=sin^2theta+cosec^2 theta+2+cos^2theta+sec^2theta+2`
`=(sin^2theta+cos^2theta)+(cosec^2theta+sec^2theta)+4`
`=5+1+tan^2thetta+1+cot^2theta`
`=7+(tantheta-cottheta)^2+2`
`=9+(tantheta-cottheta)^2ge9`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.6|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.4|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Prove that (sintheta)/(cosectheta+cottheta)=1-costheta

Prove that (1+cottheta-cosectheta)(1+tantheta+sectheta)=2

Prove that identity (sintheta)/(cosectheta)+costheta/sectheta=1

(sintheta+sin2theta)/(1+costheta+cos2theta)

Prove that (1+sintheta)/costheta+costheta/(1+sintheta)=2sectheta

Prove that (cottheta+cosectheta-1)/(cottheta-cosectheta+1)=(1+costheta)/sintheta

Prove that (sintheta +sin2theta)/(1+costheta +cos2theta)=tantheta

Prove that (cottheta+cosectheta-1)/(cottheta-cosectheta+1)=cosectheta+cottheta

Prove that following identities (sintheta+sectheta)^(2)+(costheta+cosectheta)^(2)=1+(sectheta+cosectheta)^(2)

Prove that following identities (sintheta+sectheta)^(2)+(costheta+cosectheta)^(2)=1+(sectheta+cosectheta)^(2)