Home
Class 12
MATHS
If any quadrilateral ABCD, prove that "...

If any quadrilateral ABCD, prove that `"sin"(A+B)+sin(C+D)=0` `"cos"(A+B)=cos(C+D)`

Text Solution

Verified by Experts

In quadrilateral `ABCD, A+B+C+D=2pi`.
(a) `sin(A+B)+sin(C+D)=sin(A+B)+sin(2pi-(A+B))`
`=sin(A+B)-sin(A+B)=0`
(b) `cos(A+B)=cos(C+D)`
`=cos(2pi-(C+D))=cos(C+D)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|57 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 2.5|16 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

In a triangleABC, " prove that "(sin B)/(sin C)=(c-a cos B)/(b-a cos C)

Prove that sin (A+B) sin (A-B)=cos^(2) B-cos^(2) A

Prove that sin (A+B)= sin A cos B + cos A sin B.

If A ,B ,C ,D are angles of a cyclic quadrilateral, then prove that cos A+cos B+cos C+cos D=0

In a triangleABC," prove that sin" ((B-C)/(2))=(b-c)/(a) cos""A/2 .

In any triangle ABC, prove that sin^3Acos(B-C)+sin^3Bcos(C-A)+sin^3Ccos(A-B)=3sinAsinBsinC

Prove that cos (A + B) cos (A - B) = cos^(2) B - sin^(2) A

If A + B + C = (pi)/(2) , prove that sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C