Home
Class 12
MATHS
alpha,beta,gammaa n ddelta are angle in ...

`alpha,beta,gammaa n ddelta` are angle in I, II, III and iv quadrants, respectively and none of them is an integral multiple of `pi/2dot` They form an increasing arithmetic progression. Which of the following holds? `cos(alpha+delta)>0` `cos(alpha+delta)=0` `cos(alpha+delta)<0` `cos(alpha+delta)>0orcos(alpha+delta)<0` Which of the following does not hold? `sin(beta+gamma)=sin(alpha+delta)` `sin(beta-gamma)="sin"(alpha-delta)` `sin(alpha-beta)="tan"(beta-delta)` `sin(alpha+gamma)=cos2beta)` If `alpha+beta+gamma+delta=thetaa n dalpha=70^0,` then `400^0

A

`cos(alpha-delta)gt0`

B

`cos(alpha-delta)=0`

C

`cos(alpha-delta)lt0`

D

`cos(alpha-delta)gt0or cos(alpha-delta)lt0`

Text Solution

Verified by Experts

The correct Answer is:
A

`0ltalphalt90^@,90^@ltbetalt180^@`
`180^@ltgammalt270^@,270^@ltdeltalt360^@`
`rArrgammalt270^@ltalpha+deltalt450^@`
`rArr alpha+delta` lies in the I or IV quadrant and cosine in both is positive.
If d is the common ratio of theA.P., then
`beta=alpha+d,gamma=alpha+2d,delta=alpha+3d`
`rArr beta+gamma=alpha+delta,2(alpha-beta)=-2d=beta-delta`
`and alpha+gamma=2beta`,
Now, `beta-gamma=-d,alpha-delta=-3d`
`270^@ltdeltalt360^@`
`rArr 270^@ltalpha+3dlt360^@`
`rArr 200^@lt3dlt290^@ ( :. alpha=70^@)`
`rArr400^@lt+6d,580^@`
`rArr 680^@lt4alpha+6dlt860^@`
`680^@ lttheta lt 860^@`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Numerical)|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

IF cos ( alpha + beta ) =0 then sin ( alpha + 2 beta ) is equal to

Which of the following is independent of alpha in the hyperbola (0 < alpha < pi/2)x^2/cos^2 alpha-y^2/sin^2alpha=1

In Delta ABC , prove that c cos (A - alpha) + a cos (C + alpha) = b cos alpha

Consider equation (x - sin alpha) (x-cos alpha) - 2 = 0 . Which of the following is /are true?

If the normals at alpha, beta,gamma and delta on an ellipse are concurrent then the value of (sigma cos alpha)(sigma sec alpha) I

If cos alpha + cos beta =0 = sin alpha + sin beta , then cos 2 alpha + cos 2 beta is equal to

If alpha and beta are non-zero real number such that 2(cos beta-cos alpha)+cos alpha cos beta=1. Then which of the following is treu?

If x sin ^3 alpha + y cos^3 alpha = sin alpha cos alpha and x sin alpha - y cos alpha =0 , then x^2 +y^2 is

If alpha,beta(alpha < beta) are the roots of equation 6x^2+11="" x+3="0 , then which following real? (a) cos^(-1)alpha (b) sin^(-1)beta (c) cosec^(-1)alpha (d) both cot^(-1)alpha and cot^(-1)beta

The sides of a triangle are sin alpha , cos alpha and sqrt( 1+ sin alpha cos alpha ) for some 0 lt alpha lt pi/2 then the greater angle of the triangle is