Home
Class 12
MATHS
If (sin^4x)/2+(cos^4x)/3=1/5t h e n ta...

If `(sin^4x)/2+(cos^4x)/3=1/5t h e n` `tan^2x=2/3` (b) `(sin^8x)/8+(cos^8x)/(27)=1/(125)` `tan^2x=1/3` (d) `(sin^8x)/8+(cos^8x)/(27)=2/(125)`

A

`tan^2x=2/3`

B

`sin^8x/8+cos^8x/27=1/125`

C

`tan^2x=1/3`

D

`sin^8/8+cos^8x/27=2/125`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`sin^4x/2+cos^4x/3=1/5`
`3sin^4x+2(1-sin^2x)^2=6/5`
`rArr 25sin^4x-20 sin^2 x+4=0`
`rArr sin^2x=2/5`
`:. cos^2x=3/5`
`:. tan^2x=2/3`
`and sin^8x/8+cos^8x/27=1/125`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise JEE Main Previous Year|2 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Find int(sin^6x)/(cos^8x)dxdot

cos 4x =1- 8 sin ^(2) x cos ^(2) x

int (sin^(8) x - cos ^(8) x)/( 1 - 2 sin^(2) x cos^(2) x) dx is

Integrate the functions (sin^(8)x-cos^(8)x)/(1-2sin^(2)xcos^(2)x)

Prove that: (sinx)/(cos3x)+(sin3x)/(cos9x)+(sin9x)/(cos27 x)=(1/2)(tan27 x-tanx)

int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin^2x + sin^3x cos^2x + cos^5x)^2 \ dx

(sin x + sin 3x )/( cos x + cos 3x )= tan 2x

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1