Home
Class 12
MATHS
If 0 lt alpha lt beta lt gamma lt pi//2...

If `0 lt alpha lt beta lt gamma lt pi//2`, then the equation
`(x-sinbeta)(x-singamma)+(x-sinalpha)(x-singamma)+(x-sinalpha)(x-sinbeta)=0` has

A

real and unequal roots

B

non-real roots

C

real and equal roots

D

real and unequal roots greater than `2`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` Let `f(x)=(x-sinbeta)(x-singamma)+(x-sinalpha)(x-singamma)+(x-sinalpha)(x-sinbeta)`
Now, `f(sin alpha)=(sinalpha-sinbeta)(sinalpha-singamma)`
`=(-)(-)=positive
`f(sinbeta)=(sinbeta-sinalpha)(sinbeta-sinalpha)=(+)(-)=`negative
`f(sin gamma)=(sin gamma-sinalpha)(singamma-sinbeta)=(+)(+)=`positive
`implies "Roots of " f(x)=0` are real and distinct.
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Comprehension|12 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Multiple Correct Answer|6 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|12 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma, in (0,pi/2) , then prove that (s i(alpha+beta+gamma))/(sinalpha+sinbeta+singamma)<1

If 0ltalphaltbetaltgammagtpi//2 ,then prove that tanalphalt(sinalpha+sinbeta+singamma)/(cosalpha+cosbeta+cosgamma)lttangamma .

If sin(alpha+beta)sin(alpha-beta)=singamma(2sinbeta+singamma), where 0 < alpha,beta,gamma < pi, then the straight line whose equation is xsinalpha+ysinbeta-singamma=0 passes through point (a) (1,1) (b) (-1,1) (c) (1,-1) (d) none of these

If a lt b lt c lt d , then for any real non-zero lambda , the quadratic equation (x-a)(x-c)+lambda(x-b)(x-d)=0 ,has

If 0 lt alpha lt (pi)/(3) , then prove that alpha (sec alpha) lt (2pi)/(3).

If alpha,beta,gamma are acute angles and costheta=sinbeta//sinalpha,cosvarphi=singamma//sinalpha and cos(theta-varphi) = sinbetasingamma , then the value of tan^2alpha-tan^2beta-tan^2gamma is equal to (a) -1 (b) 0 (c) 1 (d) 2

If 0 lt x lt 2 pi and |cos x| le sin x , then

If "cot"(alpha+beta)=0, then "sin"(alpha+2beta) can be (a) -sinalpha (b) sinbeta (c) cosalpha (d) cosbeta

Solve 0 lt |x| lt 2

IF 0 lt x lt (pi)/(2) then tan (pi/4 +x) + tan "(pi/4-x) is equal to