Home
Class 12
MATHS
Let f(x)=ax^(2)+bx+c, g(x)=ax^(2)+qx+r, ...

Let `f(x)=ax^(2)+bx+c`, `g(x)=ax^(2)+qx+r`, where `a`, `b`, `c`,`q`, `r in R` and `a lt 0`. If `alpha`, `beta` are the roots of `f(x)=0` and `alpha+delta`, `beta+delta` are the roots of `g(x)=0`, then

A

`f_(max) gt g_(max)`

B

`f_(max) lt g_(max)`

C

`f_(max) = g_(max)`

D

cant say anything about relation between `f_(max)` and `g_(max)`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` `|alpha-beta|^(2)=|(alpha+delta)-(beta+delta)|^(2)`
`implies(alpha+beta)^(2)-4alphabeta`
`=((alpha+delta)+(beta+delta))^(2)-4(alpha+delta)(beta+delta)`
`implies (b^(2))/(a^(2))-(4c)/(a)=(q^(2))/(a^(2))-(4r)/(a)`
`implies (b^(2)-4ac)/(4a)=(q^(2)-4ar)/(4a)`
`impliesf_(max)=-(D)/(4a)=g_(max)`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Comprehension|12 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Multiple Correct Answer|6 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=ax^(2)+bx+c , g(x)=ax^(2)+px+q , where a , b , c , q , p in R and b ne p . If their discriminants are equal and f(x)=g(x) has a root alpha , then

If alpha,beta are roots of x^2-3x+a=0 , a in R and alpha <1< beta then find the value of a.

If alpha, beta are the roots of 7x^(2)+ax+2=0 and if beta-alpha=(-13)/(7). find the value of a.

If alpha and beta are roots of x^(2)+8x+10=0 then (alpha)/(beta)+(beta)/(alpha) is :

If alpha" and "beta are the roots of ax^(2)+bx+c=0 and alpha+k, beta+k are the roots of px^(2)+qx+r=0 , then (b^(2)-4ac)/(q^(2)-4pr)=

If alpha" and "beta are the roots of x^(2)-ax+b^(2)=0 , then alpha^(2)+beta^(2) is equal to

alpha,beta be the roots of the equation x^2-px+r=0 and alpha/2 , 2beta be the roots of the equation x^2-qx+r=0 then value of r is

If alpha and beta are the roots of the equation ax^(2)+bx+c=0 then (alpha+beta)^(2) is …………..

If alpha, beta are the roots of the equation (x-a)(x-b)=5 then the roots of the equation (x- alpha)(x-beta)+5=0 are