Home
Class 12
MATHS
If a+b+c=24, a^(2)+b^(2)+c^(2)=210, abc=...

If `a+b+c=24`, `a^(2)+b^(2)+c^(2)=210`, `abc=440`. Then the least value of `a-b-c` is

A

`-2`

B

`2`

C

`8`

D

`-14`

Text Solution

Verified by Experts

The correct Answer is:
D

`(d)` `ab+bc+ca=((a+b+c)^(2)-(a^(2)+b^(2)+c^(2)))/(2)=183`
Hence `a`, `b`, `c` are the roots of the equation.
`t^(3)-24t^(2)+183t-440=0`
`implies(t-5)(t-8)(t-11)=0`
Thus `{a,b,c}={5,8,11}`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Comprehension|12 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Multiple Correct Answer|6 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|12 Videos

Similar Questions

Explore conceptually related problems

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

If |[b^2+c^2,a b,a c],[ a b, c^2+a^2,b c],[c a, c b, a^2+b^2]|=k a^2b^2c^2, then the value of k is a b c b. a^2b^2c^2 c. b c+c a+a b d. none of these

Let a, b, c be in an AP and a^2, b^2, c^2 be in GP. If a < b < c and a + b+ c=3/2 then the value of a is

If a x^(2)+b x+c=0 and b x^(2)+c x+a=0, a, b, c ne 0 have a common root, then value of ((a^(3)+b^(3)+c^(3))/(a b c))^(2) is

If a , b , c are the sides of triangle , then the least value of (a)/(c+a-b)+(b)/(a+b-c)+(c )/(b+c-a) is

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

If a,b,c and A,B,C in R-{0} such that aA+bB+cC-sqrt((a^(2)+b^(2)+c^(2))(A^(2)+B^(2)+C^(2)))=0 , then value of (aB)/(bA) +(bC)/(cB) + (cA)/(aC) is

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

If |(a^2,b^2,c^2),((a+b)^2 ,(b+1)^2,(c+1)^2),((a-1)^2 ,(b-1)^2,(c-1)^2)| =k(a-b)(b-c)(c-a) then the value of k is a. 4 b. -2 c.-4 d. 2

The area of a triangle A B C is equal to (a^2+b^2-c^2) , where a, b and c are the sides of the triangle. The value of tan C equals