Home
Class 12
MATHS
If x gt 0, y gt 0, z gt 0, the least val...

If `x gt 0`, `y gt 0`, `z gt 0`, the least value of
`x^(log_(e)y-log_(e)z)+y^(log_(e)z-log_(e)x)+Z^(log_(e)x-log_(e)y)` is

A

`3`

B

`1`

C

`5`

D

`6`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` Let `log_(e)x=a`, `log_(e)y=b`, `log_(e)z=c`
`impliesx=e^(a)`, `y=e^(b)`, `z=e^(c )`
So, given expression `e^(a(b-c))+e^(b(c-a))+e^((a-b))`
Using A.M. ge G.M.
`:.(e^(a(b-c))+e^(b(c-a))+e^(c(a-b)))/(3)` ge [a^(a(b-c)+b(c-a)+c(a-b))]^(1//3)`
`:.e^(a(b-c))+e^(b(c-a)+e^(c(a-b)))ge 3`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos

Similar Questions

Explore conceptually related problems

The value of int(e^(5log_(e)x)+e^(4log_(e)x))/(e^(3log_(e)x)+e^(2log_(e)x))dx is

Find the value of |(1,log_(x) y,log_(x) z),(log_(y) x,1,log_(y) z),(log_(z) x,log_(z) y,1)| if x,y,z ne 1

If x gt 1 , y gt 1 , z gt 1 are in G.P. , then log_(ex)e , log_(ey)e , log_(ez)e are in

for x,x,z gt 0 Prove that |{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0

Evaluate: int(log_(e x)e*log_(e^2x)e*log_(e^3x)e)/x dx

I=int \ log_e (log_ex)/(x(log_e x))dx

Find the range of f(x)=(log)_e x-((log)_e x)^2/(|(log)_e x|)

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

e ^(x log a)e^(x)