Home
Class 12
MATHS
Minimum value of f(x)=cos^(2)x+(secx)/(4...

Minimum value of `f(x)=cos^(2)x+(secx)/(4)`, `x in (-(pi)/(2),(pi)/(2))` is

A

`3//2`

B

`3//4`

C

`3//8`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `f(x)=cos^(2)x+(secx)/(4)`
`=cos^(2)x+(1)/(4cosx)`
For `x in (-(pi)/(2),(pi)/(2))`, `cosx gt 0`
Now `f(x)=cos^(2)x+(1)/(8cosx)+(1)/(8cosx)`
Using `A.M. ge G.M.`
`implies(cos^(2)x+(1)/(8cosx)+(1)/(8cosx))/(3) ge ((1)/(8^(2)))^((1)/(3))=[((1)/(4))^(3)]^((1)/(3)`
`impliescos^(2)x+(1)/(4cosx) ge (3)/(4)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos

Similar Questions

Explore conceptually related problems

If f(x) =sin x +log_(e)|sec x + tanx|-2x for x in (-(pi)/(2),(pi)/(2)) then check the monotonicity of f(x)

Find the absolute maximum and minimum values of the function f given by f(x) = cos^(2)x+sinx, x in [ 0,pi]

Find the values of k so that the function f is continuous at the indicated point. f(x)={{:((k cos x)/(pi -2x)," if "x ne (pi)/(2)),(3," if "x= (pi)/(2)):}" at "x=(pi)/(2) .

The fundamental period of the function f(x)=4cos^4((x-pi)/(4pi^2))-2cos((x-pi)/(2pi^2)) is equal to :

Solve cos 2x=|sin x|, x in (-pi/2, pi) .

Solve cos 2x=|sin x|, x in (-pi/2, pi) .

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Prove that cos^(2)x + cos^(2)(x + (pi)/(3)) + cos^(2) (x - (pi)/(3)) = (3)/(2)

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x