Home
Class 12
MATHS
The minimum value of (x^4+y^4+z^2)/(x y ...

The minimum value of `(x^4+y^4+z^2)/(x y z)` for positive real numbers `x ,y ,z` is `sqrt(2)` `2sqrt(2)` `4sqrt(2)` `8sqrt(2)`

A

`sqrt(2)`

B

`2sqrt(2)`

C

`4sqrt(2)`

D

`8sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` By `A.M ge G.M.`
`x^(4)+y^(4) ge 2x^(2)+y^(2)` and `2x^(2)y^(2)+z^(2) ge sqrt(8)xyz`
`implies (x^(4)+y^(4)+z^(2))/(xyz) ge sqrt(8)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos

Similar Questions

Explore conceptually related problems

The minimum value of (x^4+y^4+z^2)/(x y z) for positive real numbers x ,y ,z is (a) sqrt(2) (b) 2sqrt(2) (c) 4sqrt(2) (d) 8sqrt(2)

The differential of y if y =sqrt(x^(4) + x^(2)-1)

Given that x,y,z are positive real numbers such that xyz=32 , the minimum value of sqrt((x+2y)^(2)+2z^(2)-15) is equal to

Find GCD of 25x^(2) y^(2)z, 45x^(2) y^(4) z^(3) b

Find the greatest value of x^2y^3z^4 if x^2+y^2+z^2=1,w h e r ex ,y ,z are positive.

If two different tangents of y^2=4x are the normals to x^2=4b y , then (a) |b|>1/(2sqrt(2)) (b) |b| 1/(sqrt(2)) (d) |b|<1/(sqrt(2))

If x ,y in R satify the equation x^2+y^2-4x-2y+5=0, then the value of the expression [(sqrt(x)-sqrt(y))^2+4sqrt(x y)]//(x+sqrt(x y)) is a. sqrt(2)+1 b. (sqrt(2)+1)/2 c. (sqrt(2)-1)/2 d. (sqrt(2)+1)/(sqrt(2))

If x, y, z are in A.P then 1/(sqrt(x) + sqrt(y)) , 1/(sqrt(z) + sqrt(x)) , 1/(sqrt(y) + sqrt(z)) are in

Find the vaoue of each of the folllowing polynomials for the indicated value of variables: (i) p(x) = 4x ^(2) - 3x + 7 at x =1 (ii) q (y) = 2y ^(3) - 4y + sqrt11 at y =1 (iii) r (t) = 4t ^(4) + 3t ^(3) -t ^(2) + 6 at t =p, t in R (iv) s (z) = z ^(3) -1 at z =1 (v) p (x) = 3x ^(2) + 5x -7 at x =1 (vii) q (z) = 5z ^(3) - 4z + sqrt2 at z =2