Home
Class 12
MATHS
If n(1), n(2), n(3),…..,n(100) are posit...

If `n_(1)`, `n_(2)`, `n_(3)`,…..,`n_(100)` are positive real numbers such that `n_(1)+n_(2)+n_(3)+…+n_(100)=20` and `k=n_(1)(n_(2)+n_(3)+n_(4))(n_(5)+n_(6)+…+n_(9))(n_(10)+….+n_(16))…(…+n_(100))`, then `k` belongs to

A

`(o,100]`

B

`(o,128]`

C

`(o,144]`

D

`(o,1024]`

Text Solution

Verified by Experts

The correct Answer is:
D

`(d)` Using `A.M ge G.M.`
`([n_(1)+(n_(2)+n_(3)+n_(4))+(n_(5)+n_(6)+...+n_(9))+...+(...+n_(100))])/(10) ge 10sqrt(k)(AM ge GM)`
`implies 2 ge 10 sqrt(k)`
`implies 0 lt k le 1024`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos

Similar Questions

Explore conceptually related problems

" "_(2)n_(1)=(v_(1))/(v_(2)): :""_(1)n_(2): ………………..

Let n_1ltn_2ltn_3ltn_4ltn_5 be positive integers such that n_1+n_2+n_3+n_4+n_5="20. then the number of distinct arrangements n_1, n_2, n_3, n_4, n_5 is

Prove that n! ( n +2) = n ! + ( n + 1) !

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

If n_1, n_2 are positive integers, then (1 + i)^(n_1) + ( 1 + i^3)^(n_1) + (1 + i_5)^(n_2) + (1 + i^7)^(n_2) is real if and only if :

If .^(n+5) P_(n +1) = ((11(n-1))/2) .^(n +3) P_(n) then the value of n are

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)