Home
Class 12
MATHS
The least integral value of f(x)=((x-1...

The least integral value of
`f(x)=((x-1)^(7)+3(x-1)^(6)+(x-1)^(5)+1)/(x-1)^(5)`, `AAx gt 1` is

A

`8`

B

`6`

C

`12`

D

`18`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `f(x)=(x-1)^(2)+3(x-1)+1+(x-1)^(-5)`
Consider `x-1=a gt 0` (as `x gt 1`)
`:.` We have `a^(2)+3a+1+a^(-5)`
Consider quantities `a^(2),a,a,a,1,a^(-5)`
Using `A.M. ge G.M.` , we have
`(a^(2)+a+a+a+1+a^(-5))/(6) ge 1`
`impliesa^(2)+3a+1+a^(-5) ge 6`
`impliesf(x) ge 6 AA x gt 1`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos

Similar Questions

Explore conceptually related problems

Find the smallest integral value of x satisfying (x-2)^(x^2-6x+8))>1

Integrate (x^(2)+x+1)/((x-1)^(3))dx

The number of intergal values of x if 5x -1 lt (x+1)^2 lt 7 x-3 is

The least integral value of x where f(x)=(log)_(1/2)(x^2-2x-3) is monotonically decreasing is________

Evaluate lim_(xtooo) ((7x^(2)+1)/(5x^(2)-1))^((x^(5))/(1-x^(3))).

Integrate the functions (x^(3)-1)^(1/3)x^(5)

If f(x) is an invertible function and g(x)=2f(x)+5, then the value of g^(-1)(x)i s 2f^(-1)(x)-5 (b) 1/(2f^(-1)(x)+5) 1/2f^(-1)(x)+5 (d) f^(-1)((x-5)/2)

Integrate the functions (5x)/((x+1)(x^(2)+9))

3x-7 gt 5x-1

The number of integral values in the range of the function f(x)=sin^(-1)x-cot^(-1)x+x^(2)+2x +6 is