Home
Class 12
MATHS
If a,b,c are positive real numbers and 2...

If `a,b,c` are positive real numbers and `2a+b+3c=1`, then the maximum value of `a^(4)b^(2)c^(2)` is equal to

A

`(1)/(3*4^(8))`

B

`(1)/(9*4^(7))`

C

`(1)/(9*4^(8))`

D

`(1)/(27*4^(8))`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` Consider positive numbers
`(2a)/(4)`, `(2a)/(4)`,`(2a)/(4)`,`(2a)/(4)`,`(b)/(2)`,`(b)/(2)`,`(3c)/(2)`,`(3c)/(2)`
Using `A.M. ge G.M.`
`((2a)/(4)+(2a)/(4)+(2a)/(4)+(2a)/(4)+(b)/(2)+(b)/(2)+(3c)/(2)+(3c)/(2))/(8)`
`ge (((2a)/(4)*(2a)/(4)*(2a)/(4)*(2a)/(4)*(b)/(2)*(b)/(2)*(3c)/(2)*(3c)/(2))/(8))^((1)/(8)`
`implies(2a+b+3c)/(8) ge ((3^(2))/(2^(8))*a^(4)b^(2)c^(2))^((1)/(8))`
`(1)/(8) ge ((3^(2)a^(4)b^(2)c^(2))^((1)/(8)))/(2)`
`impliesa^(4)b^(2)c^(2) le (1)/(4^(8)*3^(2))`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos

Similar Questions

Explore conceptually related problems

If a and b are positive numbers such that a^(2) + b^(2) = 4 , then find the maximum value of a^(2) b .

If a, b,c are three positive real numbers , then find minimum value of (a^(2)+1)/(b+c)+(b^(2)+1)/(c+a)+(c^(2)+1)/(a+b)

If a,b,c,in R^(+) , such that a+b+c=18 , then the maximum value of a^2,b^3,c^4 is equal to

If three positive real numbers a, b, c are in A.P and abc = 4 , then the minimum possible value of b is

If a+2b+3c=4, then find the least value of a^2+b^2+c^2dot

Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positive numbers a b c=1a n dA^T A=I , then find the value of a^3+b^3+c^3dot

Let a ,b and c be real numbers such that a+2b+c=4 . Find the maximum value of (a b+b c+c a)dot

If a,b , c are distinct +ve real numbers and a^(2)+b^(2)+c^(2)=1" then "ab+bc+ca is

If a , b , c are real numbers forming an A.P. and 3+a , 2+b , 3+c are in G.P. , then minimum value of ac is

If a ,b ,c are non-zero real numbers, then the minimum value of the expression (((a^4+ 3a^2+1)(b^4+5b^2+1)(c^4+7c^2+1))/(a^2b^2c^2)) is not divisible by prime number.