Home
Class 12
MATHS
If x(1), x(2) and x(3) are the positive ...

If `x_(1)`, `x_(2)` and `x_(3)` are the positive roots of the equation `x^(3)-6x^(2)+3px-2p=0`, `pinR`, then the value of `sin^(-1)((1)/(x_(1))+(1)/(x_(2)))+cos^(-1)((1)/(x_(2))+(1)/(x_(3)))-tan^(-1)((1)/(x_(3))+(1)/(x_(1)))` is equal to

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`(3pi)/(4)`

D

`pi`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` `x^(3)-6x^(2)+3px-2p=0`
`A.M.=(x_(1)+x_(2)+x_(3))/(3)=(6)/(3)=2`
`H.M.=(3)/((1)/(x_(1))+(1)/(x_(2))+(1)/(x_(3)))=(3x_(1)x_(2)x_(3))/(sumx_(1)x_(2))=2`
`:, A.M.=H.M.impliesx_(1)=x_(2)=x_(3)=2`
`sin^(-1)((1)/(x_(1))+(1)/(x_(2)))+cos^(-1)((1)/(x_(2))+(1)/(x_(3)))-tan^(-1)((1)/(x_(3))+(1)/(x_(1)))`
`=(pi)/(2)+0-(pi)/(4)=(pi)/(4)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Examples|37 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|222 Videos

Similar Questions

Explore conceptually related problems

If a is a root of the equation x^(2)-3x+1=0 , then the value of (a^3)/(a^6+1) is equal to

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

One root of the equation (12x -1)(6x -1)(4x-1)(3x-1)=5 is

Solve : tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3),xgt0

sin^(-1) (3 "" (x)/(2)) + cos^(-1) (3 "" (x)/(2)) = ………..

int_(1//3)^(3)(1)/(x)log_(e)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx is equal to

Solve : tan^(-1) ((x-2)/(x-3)) + tan^(-1) ((x+2)/(x+3)) = pi/4

If x in [-1,0], then find the value of cos^(-1)(2x^2-1)-2sin^(-1)x

If x^(2) + (1)/(x^(2)) = 23 , then find the value of x + (1)/( x) and x^(3) + (1)/( x^(3))