Home
Class 12
MATHS
If p^(4)+q^(3)=2(p gt 0, q gt 0), then t...

If `p^(4)+q^(3)=2(p gt 0, q gt 0)`, then the maximum value of term independent of `x` in the expansion of `(px^((1)/(12))+qx^(-(1)/(9)))^(14)` is

A

`"^(14)C_(4)`

B

`"^(14)C_(6)`

C

`"^(14)C_(7)`

D

`"^(14)C_(12)`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `(px^((1)/(12))+qx^(-(1)/(9)))^(14)`
General term `T_(r+1)=14C_(r )(px^((1)/(12)))^(14-r)(qx^((-1)/(9)))^(r )`
`=^(14)C_(r )p^(14-r)q^(r )x^((14-r)/(12)-(r )/(9))`
Term is independent of `r`, then `(14-r)/(12)-(r )/(9)=0`
`:.r=6`
`:.` Term independent of `x` is `"^(14)C_(5)p^(8)q^(6)=^(14)C_(6)(p^(4)q^(3))^(2)`
Now `p^(4)`, `q^(3)` are positive
Using `AM ge GM`
`(p^(4)+q^(3))/(2) ge (p^(4)q^(3))^(1//2)implies(p^(4)q^(3))^(2) le 1`
`implies` Maximum value of term independent of `x` is `"^(14)C_(6)`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise JEE Previous Year|16 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Find the term independent of x in the expansion of (root3x + 1/(2root3x))^(18) , x gt 0 .

The coefficients of x^(p) and x^(q) in the expansion of (1 + x)^(p + q) are

If r^[th] and (r+1)^[th] term in the expansion of (p+q)^n are equal, then [(n+1)q]/[r(p+q)] is

If tan theta+sin theta= p, tan theta-sin theta=q and p gt q " then show that "p^(2)-q^(2) =4 sqrt(pq) .

If p and q are the roots of the equation x^(2)+px+q=0 , then

If [{:(0,p,3),(2,q^2 , -1),(r, 1,0):}] is skew-symmetric , find the values of p , q and r

If p ,q in {1,2,3,4,5} , then find the number of equations of form p^2x^2+q^2x+1=0 having real roots.

If p,q are the roots of ax^(2)-25x+c=0 , then p^(3)q^(3)+p^(2)q^(3)+p^(3)q^(2)=

CENGAGE-BINOMIAL THEOREM-Single correct Answer
  1. Coefficient of x^(2009) in (1+x+x^(2)+x^(3)+x^(4))^(1001) (1-x)^(1002)...

    Text Solution

    |

  2. If the constant term in the binomial expansion of (x^2-1/x)^n ,n in N...

    Text Solution

    |

  3. If p^(4)+q^(3)=2(p gt 0, q gt 0), then the maximum value of term indep...

    Text Solution

    |

  4. In the expansion of (x^3-1/(x^2))^n ,n in N , if the sum of the coeff...

    Text Solution

    |

  5. Find the coefficient of t^(8) in the expansion of (1+2t^(2)-t^(3))^(9)...

    Text Solution

    |

  6. Find the 13^(th) term in the expansion of (9x - 1/(3sqrt(x)))^(18),x !...

    Text Solution

    |

  7. In the expansion of ((x)/(costheta)+(1)/(xsintheta))^(16), if l(1) is ...

    Text Solution

    |

  8. If A(i,j) be the coefficient of a^i b^j c^(2010-i-j) in the expansion ...

    Text Solution

    |

  9. The coefficient of x^(301 ub the expansion of (1+x)^(500)+x(1+x)^(499)...

    Text Solution

    |

  10. The coefficient of x^70 in the product (x-1)(x^2-2)(x^3-3)....(x^12-12...

    Text Solution

    |

  11. Given (1-x^(3))^(n)=sum(k=0)^(n)a(k)x^(k)(1-x)^(3n-2k) then the value ...

    Text Solution

    |

  12. Find the sum of the roots (real or complex) of the equation x^2001 + (...

    Text Solution

    |

  13. If the 4^(th) term of {sqrt(x^((1)/(1+log(10)x)))+root(12)(x)}^(6) is ...

    Text Solution

    |

  14. The number of distinct terms in the expansion of (x+y^(2))^(13)+(x^(2)...

    Text Solution

    |

  15. The value of sum(r=1)^n(sum(p=0)^(r-1) ^nCr ^rCp 2^p) is equal to

    Text Solution

    |

  16. If in the expansion of (x^(3)-(2)/(sqrt(x)))^(n) a term like x^(2) exi...

    Text Solution

    |

  17. In (3 3+1/(3 3))^n if the ratio of 7th term from the beginning to the ...

    Text Solution

    |

  18. The number of distinct terms in the expansion of is (x^(3)+(1)/(x^(3))...

    Text Solution

    |

  19. If r^[th] and (r+1)^[th] term in the expansion of (p+q)^n are equal, ...

    Text Solution

    |

  20. If (3+asqrt2)^100+(3+bsqrt2)^100=7+5sqrt2 number of pairs (a, b) for...

    Text Solution

    |