Home
Class 12
MATHS
Consider the sequence ('^(n)C(0))/(1.2.3...

Consider the sequence ``('^(n)C_(0))/(1.2.3),("^(n)C_(1))/(2.3.4),('^(n)C_(2))/(3.4.5),....,` if `n=50` then greatest term is

A

`30^(th)`

B

`24^(th)`

C

`26^(th)`

D

`27^(th)`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` Let `T_(r+1) ge T_(r )`
`implies("^(n)C_(r ))/((r+1)(r+2)(r+3)) ge ('^(n)C_(r-1))/((r )(r+1)(r+2))`
`implies("^(n)C_(r ))/('^(n)C_(r-1)) ge (r+3)/(r )`
`implies(n-r+1)/(r ) ge (r+3)/(r )`
`impliesr le ((n-2)/(2))`
For `n=50impliesr ge 24`
So `24^(th)` and `25^(th)` terms of sequence are greatest.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise JEE Previous Year|16 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

If n = 5, then (""^(n)C_(0))^(2)+(""^(n)C_(1))^(2)+(""^(n)C_(2))^(2)+......+(""^(n)C_(5))^(2) is equal to

Find the sum 1.^(n)C_(0) + 3 .^(n)C_(1) + 5.^(n)C_(2) + "….." + (2n+1).^(n)C_(n) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

If the value of "^(n)C_(0)+2*^(n)C_(1)+3*^(n)C_(2)+...+(n+1)*^(n)C_(n)=576 , then n is

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, then sum of infinite terms is

Determine n if ""^(2n)C_(3):""^(n)C_(3)=12:1 .

Find the sum sum_(j=0)^(n) (""^(4n+1)C_(j)+""^(4n+1)C_(2n-j)) .

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

If sum_(r=0)^(n){("^(n)C_(r-1))/('^(n)C_(r )+^(n)C_(r-1))}^(3)=(25)/(24) , then n is equal to

CENGAGE-BINOMIAL THEOREM-Single correct Answer
  1. The sum of last 3 digits of 3^100 is

    Text Solution

    |

  2. The remainder when 27^(10)+7^(51) is divided by 10

    Text Solution

    |

  3. Consider the sequence ('^(n)C(0))/(1.2.3),("^(n)C(1))/(2.3.4),('^(n)C(...

    Text Solution

    |

  4. If P(n) denotes the product of all the coefficients of (1+x)^(n) and 9...

    Text Solution

    |

  5. If N is a prime number which divides S=^(39)P(19)+^(38)P(19)+^(37)P(19...

    Text Solution

    |

  6. If sum(r=0)^(n){("^(n)C(r-1))/('^(n)C(r )+^(n)C(r-1))}^(3)=(25)/(24), ...

    Text Solution

    |

  7. If a,b,c,d be four consecutive coefficients in the binomial expansion ...

    Text Solution

    |

  8. ("^(m)C(0)+^(m)C(1)-^(m)C(2)-^(m)C(3))+('^(m)C(4)+^(m)C(5)-^(m)C(6)-^(...

    Text Solution

    |

  9. The value of sum(r=0)^(3n-1)(-1)^r 6nC(2r+1)3^r is

    Text Solution

    |

  10. The coefficient of x^(50) in (x+^(101)C(0))(x+^(101)C(1)).....(x+^(101...

    Text Solution

    |

  11. In the expansion of (1+x)^(70), the sum of coefficients of odd powers ...

    Text Solution

    |

  12. The sum of all the coefficients of the terms in the expansion of (x+y+...

    Text Solution

    |

  13. The value of "^(12)C(2)+^(13)C(3)+^(14)C(4)+...+^(999)C(989) is

    Text Solution

    |

  14. If (1 +x+x^2)^25 = a0 + a1x+ a2x^2 +..... + a50.x^50 then a0 + a2 + ...

    Text Solution

    |

  15. If the sum of the coefficients in the expansion of (q+r)^(20)(1+(p-2)x...

    Text Solution

    |

  16. The sum S(n)=sum(k=0)^(n)(-1)^(k)*^(3n)C(k), where n=1,2,…. is

    Text Solution

    |

  17. If for n in I , n > 10 ;1+(1+x)+(1+x)^2++(1+x)^n=sum(k=0)^n ak*x^k ...

    Text Solution

    |

  18. Given "^(8)C(1)x(1-x)^(7)+2*^(8)C(2)x^(2)(1-x)^(6)+3*^(8)C(3)x^(3)(1-x...

    Text Solution

    |

  19. The value of 99^(50)-(99)/(1)*98^(50)+(99.98)/(1.2)97^(50)-……-(99.98)/...

    Text Solution

    |

  20. Let f(n)=sum(k=1)^(n) k^2(n Ck)^ 2 then the value of f(5) equals

    Text Solution

    |