Home
Class 12
MATHS
The value of "^(12)C(2)+^(13)C(3)+^(14)C...

The value of `"^(12)C_(2)+^(13)C_(3)+^(14)C_(4)+...+^(999)C_(989)` is

A

`"^(1000)C_(11)-12`

B

`"^(1000)C_(11)+12`

C

`"^(900)C_(11)-12`

D

`"^(1000)C_(989)`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` Since `.^(10)C_(0)+.^(11)C_(1)+.^(12)C_(2)+.^(13)C_(3)+...+.^(999)C_(989)`
`=.^(1000)C_(989)=.^(1000)C_(11)`
(Since, `.^(10)C_(0)=.^(11)C_(0)` and `.^(n)C_(r )+.^(n)C_(r-1)=.^(n+1)C_(r )`)
So, `.^(12)C_(2)+.^(13)C_(3)+.^(14)C_(4)+....+.^(999)C_(989)=.^(1000)C_(11)-12`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise JEE Previous Year|16 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

The value of "^(1000)C_(50)+^(999)C_(49)+^(998)C_(48)+......+^(950)C_(0) is

Prove that ""^(10)C_(2)+2xx^(10)C_(3)+^(10)C_(4)=^(12)C_(4)

The value of .^(n)C_(0) xx .^(2n)C_(r) - .^(n)C_(1)xx.^(2n-2)C_(r)+.^(n)C_(2)xx.^(2n-4)C_(r)+"…." is equal to

If the value of "^(n)C_(0)+2*^(n)C_(1)+3*^(n)C_(2)+...+(n+1)*^(n)C_(n)=576 , then n is

If ""^(n)C_(4)=""^(n)C_(6) find ""^(12)C_(n) .

The value of sum_(r=0)^(3) ""^(8)C_(r)(""^(5)C_(r+1)-""^(4)C_(r)) is "_____" .

The value of ""^(50)C_(4)+sum_(r=1)^(6)""^(56-r)C_(3) is

The value of (""^(7)C_(0)+""^(7)C_(1))+(""^(7)C_(1)+""^(7)C_(2))+...+(""^(7)C_(6)+""^(7)C_(7)) is

CENGAGE-BINOMIAL THEOREM-Single correct Answer
  1. In the expansion of (1+x)^(70), the sum of coefficients of odd powers ...

    Text Solution

    |

  2. The sum of all the coefficients of the terms in the expansion of (x+y+...

    Text Solution

    |

  3. The value of "^(12)C(2)+^(13)C(3)+^(14)C(4)+...+^(999)C(989) is

    Text Solution

    |

  4. If (1 +x+x^2)^25 = a0 + a1x+ a2x^2 +..... + a50.x^50 then a0 + a2 + ...

    Text Solution

    |

  5. If the sum of the coefficients in the expansion of (q+r)^(20)(1+(p-2)x...

    Text Solution

    |

  6. The sum S(n)=sum(k=0)^(n)(-1)^(k)*^(3n)C(k), where n=1,2,…. is

    Text Solution

    |

  7. If for n in I , n > 10 ;1+(1+x)+(1+x)^2++(1+x)^n=sum(k=0)^n ak*x^k ...

    Text Solution

    |

  8. Given "^(8)C(1)x(1-x)^(7)+2*^(8)C(2)x^(2)(1-x)^(6)+3*^(8)C(3)x^(3)(1-x...

    Text Solution

    |

  9. The value of 99^(50)-(99)/(1)*98^(50)+(99.98)/(1.2)97^(50)-……-(99.98)/...

    Text Solution

    |

  10. Let f(n)=sum(k=1)^(n) k^2(n Ck)^ 2 then the value of f(5) equals

    Text Solution

    |

  11. The value of sum(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C(r ) is

    Text Solution

    |

  12. The value of ((100),(0))((200),(150))+((100),(1))((200),(151))+......+...

    Text Solution

    |

  13. Let t(100)=sum(r=0)^(100)(1)/(("^(100)C(r ))^(5)) and S(100)=sum(r=0)^...

    Text Solution

    |

  14. Let S(1)=underset(0 le i lt j le 100)(sumsum)C(i)C(j), S(2)=underset(0...

    Text Solution

    |

  15. "^(74)C(37)-2 is divisible by

    Text Solution

    |

  16. If "^(n)C(0)-^(n)C(1)+^(n)C(2)-^(n)C(3)+...+(-1)^(r )*^(n)C(r )=28 , t...

    Text Solution

    |

  17. If the value of "^(n)C(0)+2*^(n)C(1)+3*^(n)C(2)+...+(n+1)*^(n)C(n)=576...

    Text Solution

    |

  18. The value of ((50),(6))-((5),(1))((40),(6))+((5)/(2))((30),(6))-((5),(...

    Text Solution

    |

  19. The value of the expansion (sumsum)(0 le i lt j le n) (-1)^(i+j-1)"^(n...

    Text Solution

    |

  20. sum(m=1)^(n)(sum(k=1)^(m)(sum(p=k)^(m)"^(n)C(m)*^(m)C(p)*^(p)C(k)))=

    Text Solution

    |