Home
Class 12
MATHS
The sum S(n)=sum(k=0)^(n)(-1)^(k)*^(3n)C...

The sum `S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k)`, where `n=1,2,….` is

A

`(-1)^(n)*"^(3n-1)C_(n-1)`

B

`(-1)^(n)*"^(3n-1)C_(n)`

C

`(-1)n*"^(3n-1)C_(n+1)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `S_(n)=^(3n)C_(0)-^(3n)C_(1)+^(3n)C_(2)+….+(-1)^(n)*^(3n)C_(n)`
But `.^(3n)C_(0)=.^(3n-1)C_(0)`
`-^(3n)C_(1)=-^(3n-1)C_(0)-^(3n-1)C_(1)`
`-^(3n)C_(2)=^(3n-1)C_(1)+^(3n-1)C_(2)`
`-^(3n)C_(3)=-^(3n-1)C_(2)-^(3n-1)C_(3)`
`…………....................................`
`(-1)^(n)*^(3n)C_(n)=(-1)^(n)*^(3n-1)C_(n-1)+(-1)^(n)*^(3n-1)C_(n)`
On adding we get `S_(n)=(-1)^(n)*^(3n-1)C_(n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise JEE Previous Year|16 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Find sum_(k=1)^(n)(1)/(k(k+1)) .

The value of sum_(k=0)^(n)(i^(k)+i^(k+1)) , where i^(2)= -1 , is equal to

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

The sum sum_(k=1)^(20) k (1)/(2^(k)) is equal to

If a_(1),a_(2),a_(3),… are in G.P. , where a_(i) in C (where C satands for set of complex numbers) having r as common ratio such that sum_(k=1)^(n)a_(2k-1)sum_(k=1)^(n)a_(2k+3) ne 0 , then the number of possible values of r is

If sum_(r=0)^(n) (pr+2).""^(n)C_(r)=(25)(64) where n, p in N , then

Find the sum of sum_(r=1)^n(r^n C_r)/(n C_(r-1) .

Let S_n=sum_(k=0)^n n/(n^2+k n+k^2) and T_n=sum_(k=0)^(n-1)n/(n^2+k n+k^2) ,for n=1,2,3,......., then

CENGAGE-BINOMIAL THEOREM-Single correct Answer
  1. If (1 +x+x^2)^25 = a0 + a1x+ a2x^2 +..... + a50.x^50 then a0 + a2 + ...

    Text Solution

    |

  2. If the sum of the coefficients in the expansion of (q+r)^(20)(1+(p-2)x...

    Text Solution

    |

  3. The sum S(n)=sum(k=0)^(n)(-1)^(k)*^(3n)C(k), where n=1,2,…. is

    Text Solution

    |

  4. If for n in I , n > 10 ;1+(1+x)+(1+x)^2++(1+x)^n=sum(k=0)^n ak*x^k ...

    Text Solution

    |

  5. Given "^(8)C(1)x(1-x)^(7)+2*^(8)C(2)x^(2)(1-x)^(6)+3*^(8)C(3)x^(3)(1-x...

    Text Solution

    |

  6. The value of 99^(50)-(99)/(1)*98^(50)+(99.98)/(1.2)97^(50)-……-(99.98)/...

    Text Solution

    |

  7. Let f(n)=sum(k=1)^(n) k^2(n Ck)^ 2 then the value of f(5) equals

    Text Solution

    |

  8. The value of sum(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C(r ) is

    Text Solution

    |

  9. The value of ((100),(0))((200),(150))+((100),(1))((200),(151))+......+...

    Text Solution

    |

  10. Let t(100)=sum(r=0)^(100)(1)/(("^(100)C(r ))^(5)) and S(100)=sum(r=0)^...

    Text Solution

    |

  11. Let S(1)=underset(0 le i lt j le 100)(sumsum)C(i)C(j), S(2)=underset(0...

    Text Solution

    |

  12. "^(74)C(37)-2 is divisible by

    Text Solution

    |

  13. If "^(n)C(0)-^(n)C(1)+^(n)C(2)-^(n)C(3)+...+(-1)^(r )*^(n)C(r )=28 , t...

    Text Solution

    |

  14. If the value of "^(n)C(0)+2*^(n)C(1)+3*^(n)C(2)+...+(n+1)*^(n)C(n)=576...

    Text Solution

    |

  15. The value of ((50),(6))-((5),(1))((40),(6))+((5)/(2))((30),(6))-((5),(...

    Text Solution

    |

  16. The value of the expansion (sumsum)(0 le i lt j le n) (-1)^(i+j-1)"^(n...

    Text Solution

    |

  17. sum(m=1)^(n)(sum(k=1)^(m)(sum(p=k)^(m)"^(n)C(m)*^(m)C(p)*^(p)C(k)))=

    Text Solution

    |

  18. If ((1-3x)^(1//2)+(1-x)^(5//3))/(sqrt(4-x)) is approximately equal to ...

    Text Solution

    |

  19. The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( ...

    Text Solution

    |

  20. Coefficient of x^(2^(m+1)) in the expansion of 1/((1+x)(1+x^2)(1+x^4)(...

    Text Solution

    |