Home
Class 12
MATHS
Let f(n)=sum(k=1)^(n) k^2(n Ck)^ 2 then ...

Let `f(n)=sum_(k=1)^(n) k^2(n C_k)^ 2` then the value of f(5) equals

A

`1000`

B

`1250`

C

`1750`

D

`2500`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` `k^(n)C_(k)=n^(n-1)C_(k-1)`
`:.sum_(k=1)^(n)k^(2)("^(n)C_(k))^(2)`
`=n^(2)sum_(k=1)^(n)("^(n-1)C_(k-1))^(2)`
`=n^(2)("^(2n-2)C_(n-1))`
`:. F(5)=25("^(8)C_(4))=1750`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise JEE Previous Year|16 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Given (1-x^(3))^(n)=sum_(k=0)^(n)a_(k)x^(k)(1-x)^(3n-2k) then the value of 3*a_(k-1)+a_(k) is

Let s_(n) denote the sum of first n terms of an A.P. and S_(2n) = 3S_(n) . If S_(3n) = kS_(n) then the value of k is equal to

Let f be a continuous function on R such that f (1/(4n))=sin e^n/(e^(n^2))+n^2/(n^2+1) Then the value of f(0) is

Let S_n=sum_(k=1)^(4n)(-1)(k(k+1))/2k^2dot Then S_n can take value (s) 1056 b. 1088 c. 1120 d. 1332

Find sum_(k=1)^(n)(1)/(k(k+1)) .

Statement1: if n in Na n dn is not a multiple of 3 and (1+x+x^2)^n=sum_(r=0)^(2n)a_r x^r , then the value of sum_(r=0)^n(-1)^r a r^n C_r is zero Statement 2: The coefficient of x^n in the expansion of (1-x^3)^n is zero, if n=3k+1orn=3k+2.

If alpha=e^(i2pi//7)a n df(x)=a_0+sum_(k-0)^(20)a_k x^k , then prove that the value of f(x)+f(alpha, x)+......+f(alpha^6x) is independent of alphadot

The function f(x)=sum_(k=1)^5 (x-K)^2 assumes then minimum value of x given by (a) 5 (b) 5/2 (c) 3 (d) 2

CENGAGE-BINOMIAL THEOREM-Single correct Answer
  1. The sum S(n)=sum(k=0)^(n)(-1)^(k)*^(3n)C(k), where n=1,2,…. is

    Text Solution

    |

  2. If for n in I , n > 10 ;1+(1+x)+(1+x)^2++(1+x)^n=sum(k=0)^n ak*x^k ...

    Text Solution

    |

  3. Given "^(8)C(1)x(1-x)^(7)+2*^(8)C(2)x^(2)(1-x)^(6)+3*^(8)C(3)x^(3)(1-x...

    Text Solution

    |

  4. The value of 99^(50)-(99)/(1)*98^(50)+(99.98)/(1.2)97^(50)-……-(99.98)/...

    Text Solution

    |

  5. Let f(n)=sum(k=1)^(n) k^2(n Ck)^ 2 then the value of f(5) equals

    Text Solution

    |

  6. The value of sum(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C(r ) is

    Text Solution

    |

  7. The value of ((100),(0))((200),(150))+((100),(1))((200),(151))+......+...

    Text Solution

    |

  8. Let t(100)=sum(r=0)^(100)(1)/(("^(100)C(r ))^(5)) and S(100)=sum(r=0)^...

    Text Solution

    |

  9. Let S(1)=underset(0 le i lt j le 100)(sumsum)C(i)C(j), S(2)=underset(0...

    Text Solution

    |

  10. "^(74)C(37)-2 is divisible by

    Text Solution

    |

  11. If "^(n)C(0)-^(n)C(1)+^(n)C(2)-^(n)C(3)+...+(-1)^(r )*^(n)C(r )=28 , t...

    Text Solution

    |

  12. If the value of "^(n)C(0)+2*^(n)C(1)+3*^(n)C(2)+...+(n+1)*^(n)C(n)=576...

    Text Solution

    |

  13. The value of ((50),(6))-((5),(1))((40),(6))+((5)/(2))((30),(6))-((5),(...

    Text Solution

    |

  14. The value of the expansion (sumsum)(0 le i lt j le n) (-1)^(i+j-1)"^(n...

    Text Solution

    |

  15. sum(m=1)^(n)(sum(k=1)^(m)(sum(p=k)^(m)"^(n)C(m)*^(m)C(p)*^(p)C(k)))=

    Text Solution

    |

  16. If ((1-3x)^(1//2)+(1-x)^(5//3))/(sqrt(4-x)) is approximately equal to ...

    Text Solution

    |

  17. The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( ...

    Text Solution

    |

  18. Coefficient of x^(2^(m+1)) in the expansion of 1/((1+x)(1+x^2)(1+x^4)(...

    Text Solution

    |

  19. Let (2x^(2)+3x+4)^(10)=sum(r=0)^(20)a(r )x^(r ), then the value of (a(...

    Text Solution

    |

  20. "^(30)C(0)*^(20)C(10)+^(31)C(1)*^(19)C(10)+^(32)C(2)*18C(10)+....^(40)...

    Text Solution

    |