Home
Class 12
MATHS
The sum of the series 1 + (1)/(3^(2))...

The sum of the series
`1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., ` is

A

`((3)/(2))^((1)/(3))`

B

`((5)/(4))^((1)/(3))`

C

`((3)/(2))^((1)/(6))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` Let `S=1+(1)/(3^(2))+(1.4)/(2.4)(1)/(3^4)+(1.4.7)/(1.2.3)(1)/(3^(6))+.....`
`impliesS=1+((1)/(3))((1)/(3))+((1)/(3)*(1)/(3))/(1.2)((1)/(3))^(2)+((1)/(3)*(4)/(3)*(7)/(3))/(1.2.3)((1)/(3))^(2)+....`
`impliesS=1+((1)/(3))((1)/(3))+((1)/(3)(1+(1)/(3)))/(2!)((1)/(3))^(2)+((1)/(3)(1+(1)/(3))(2+(1)/(3)))/(3!)((1)/(3))^(3)+....`
`=(1-(1)/(3))^(-(1)/(3))=((2)/(3))^(-(1)/(3))=((3)/(2))^((1)/(3))`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise JEE Previous Year|16 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

The sum of the series 1 + 1/(4.2!) + 1/(16.4!) + 1/(64.6!) + ....infty is

The sum of series 1/2! + 1/4! + 1/6! + …….. is

Find the sum of the series 1/(3^2+1)+1/(4^2+2)+1/(5^2+3)+1/(6^2+4)+oo

The sum of the series 1/(2!) - 1/(3!) + 1/(4!) - …….. upto infinity is

The sum to infinity of the series 1+2/3+6/(3^2)+(10)/(3^3)+(14)/(3^4). . . . . . is (1) 2 (2) 3 (3) 4 (4) 6

Solve (1)/(x+1) + (4)/(3x+6) = (2)/(3)

The sum to n terms of series 1+(1/2+1/(2^2))+1+(1/2+1/(2^2)+1/(2^3)+1/(2^4))+ is

Find the sum of the following series: 1/2+1/(3^2)+1/(2^3)+1/(3^4)+1/(2^5)+1/(3^6)+oo

If the sum of the first 15 terms of the series ((3)/(4))^(3)+(1(1)/(2))^(3)+(2(1)/(4))^(3)+3^(3)+(3(3)/(4))^(3)+... is equal to 225k, then k is equal to

CENGAGE-BINOMIAL THEOREM-Single correct Answer
  1. The sum S(n)=sum(k=0)^(n)(-1)^(k)*^(3n)C(k), where n=1,2,…. is

    Text Solution

    |

  2. If for n in I , n > 10 ;1+(1+x)+(1+x)^2++(1+x)^n=sum(k=0)^n ak*x^k ...

    Text Solution

    |

  3. Given "^(8)C(1)x(1-x)^(7)+2*^(8)C(2)x^(2)(1-x)^(6)+3*^(8)C(3)x^(3)(1-x...

    Text Solution

    |

  4. The value of 99^(50)-(99)/(1)*98^(50)+(99.98)/(1.2)97^(50)-……-(99.98)/...

    Text Solution

    |

  5. Let f(n)=sum(k=1)^(n) k^2(n Ck)^ 2 then the value of f(5) equals

    Text Solution

    |

  6. The value of sum(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C(r ) is

    Text Solution

    |

  7. The value of ((100),(0))((200),(150))+((100),(1))((200),(151))+......+...

    Text Solution

    |

  8. Let t(100)=sum(r=0)^(100)(1)/(("^(100)C(r ))^(5)) and S(100)=sum(r=0)^...

    Text Solution

    |

  9. Let S(1)=underset(0 le i lt j le 100)(sumsum)C(i)C(j), S(2)=underset(0...

    Text Solution

    |

  10. "^(74)C(37)-2 is divisible by

    Text Solution

    |

  11. If "^(n)C(0)-^(n)C(1)+^(n)C(2)-^(n)C(3)+...+(-1)^(r )*^(n)C(r )=28 , t...

    Text Solution

    |

  12. If the value of "^(n)C(0)+2*^(n)C(1)+3*^(n)C(2)+...+(n+1)*^(n)C(n)=576...

    Text Solution

    |

  13. The value of ((50),(6))-((5),(1))((40),(6))+((5)/(2))((30),(6))-((5),(...

    Text Solution

    |

  14. The value of the expansion (sumsum)(0 le i lt j le n) (-1)^(i+j-1)"^(n...

    Text Solution

    |

  15. sum(m=1)^(n)(sum(k=1)^(m)(sum(p=k)^(m)"^(n)C(m)*^(m)C(p)*^(p)C(k)))=

    Text Solution

    |

  16. If ((1-3x)^(1//2)+(1-x)^(5//3))/(sqrt(4-x)) is approximately equal to ...

    Text Solution

    |

  17. The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( ...

    Text Solution

    |

  18. Coefficient of x^(2^(m+1)) in the expansion of 1/((1+x)(1+x^2)(1+x^4)(...

    Text Solution

    |

  19. Let (2x^(2)+3x+4)^(10)=sum(r=0)^(20)a(r )x^(r ), then the value of (a(...

    Text Solution

    |

  20. "^(30)C(0)*^(20)C(10)+^(31)C(1)*^(19)C(10)+^(32)C(2)*18C(10)+....^(40)...

    Text Solution

    |