Home
Class 12
MATHS
If (1+px+x^(2))^(n)=1+a(1)x+a(2)x^(2)+…+...

If `(1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n)`.
The remainder obtained when `a_(1)+5a_(2)+9a_(3)+13a_(4)+…+(8n-3)a_(2n)` is divided by `(p+2)` is

A

`1`

B

`2`

C

`3`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` `a_(1)+5a_(2)+9a_(3)+…+(8n-3)a_(2n)=sum_(r=1)^(2n)(4r-3)a_(r )`
`=4sum_(r=1)^(2n)ra_(r )-3sum_(r=1)^(2n)a_(r )`
`(1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+….+a_(2n)X^(2n)`
so, `sum_(r=1)^(2n)a_(r )=(p+2)^(n)-1`
Differentiating the expansion and substituting `x=1`
`sum_(r=1)^(2n)rar_(r)=n(p+2)^(n)`
`:.sum_(r=1)^(2n)(4r-3)a_(r )=4n(p+2)^(n)-3((p+2)^(n)-1)`
`=(4n-3)(p+2)^(n)+3`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . The value of a_(1)+3a_(2)+5a_(3)+7a_(4)+….(4n-1)a_(2n) when p=-3 and n in even is

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . Which of the following is true for 1 lt r lt 2n

If (1 + x - 3x^(2))^(10) = a_(0) + a_(1)x + a_(2)x^(2) + ....... + a_(20)x^(20) , then a_(2) + a_(4) + a_(6) + ……. + a_(20) =

If (1+x+x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then following questions. The value of a_(0) + a_(1) + a_(2) + "……" + a_(19) is

If (1+x+x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then following questions. The value of a_(0) + 3a_(1) + 5a_(2) + "……" + 81a_(40) is

If (1+x^(2))^(2)(1+x)^(n) =a_(0) + a_(1)x + a_(2)x^(2) + …+ x^(n+4) and if a_(0), a_(1), a_(2) are in A.P., then n is:

If a_(1), a_(2) , ……. A_(n) are in H.P., then the expression a_(1)a_(2) + a_(2)a_(3) + ….. + a_(n - 1)a_(n) is equal to

If (2x^(2) - x - 1)^(5) = a_(0) + a_(1)x + a_(2)x^(2) + ....... + a_(10)x^(10) then, a_(2) + a_(4) + a_(6) + a_(8) + a_(10) =

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of

If (1+x+x^2)^n=a_0+a_1x+a_2x^2++a_(2n)x_(2n), find the value of a_0+a_6++ ,n in Ndot