Home
Class 12
MATHS
if omega ne 1 is a cube root of unity a...

if` omega ne 1` is a cube root of unity and `x+y +x ne 0,` then prove that `|{:((x )/(1+ omega),,(y)/(omega+omega^(2)),,(z)/(omega^(2)+1)),((y)/(omega+omega^(2)),,(z)/(omega^(2)+1),,(x)/(1+omega)),((z)/(omega^(2)+1),,(x)/(1+omega),,(y)/(omega+omega^(2))):}|`

A

`x^(2)+y^(2)+z^(2)=0`

B

`x+yomega+zomega^(2)=0` or `x=y=z`

C

`x ne y ne z ne 0`

D

x=2y=3z

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` As `1+omega+omega^(2)=0`
`D=|{:(-(x)/(omega^(2)),-y,-(z)/(omega)),(-y,-(z)/(omega),-(x)/(omega^(2))),(-(z)/(omega),-(x)/(omega^(2)),-y):}|=x^(3_+y^(3)+z^(3)-3xyz`
`=(1)/(2)(x+y+z){(x-y)^(2)+(y-z)^(2)+(z-x)^(2)}`
`=(x+y+z)(x+yomega+zomega^(2))(x+yomega^(2)+zomega)`
The determinant varnishes if `x=y=z` or `x+yomega+zomega^(2)=0`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos

Similar Questions

Explore conceptually related problems

If omega!=1 is a cube root of unity and x+y+z!=0, then prove that |x/(1+omega)y/(omega+omega^2)z/(omega^2+1)y/(omega+omega^2)z/(omega^2+1)x/(1+omega)(z z)/(omega^2+1)x/(1+omega)y/(omega+omega^2)|=0 if x=y=z

if omega!=1 is cube root of unity and x+y+z != 0 then |[x/(1+omega),y/(omega+omega^2),z/(omega^2+1)],[y/(omega+omega^2),z/(omega^2+1),x/(1+omega)],[z/(omega^2+1),x/(1+omega),y/(omega+omega^2)]| =0 if

If omega pm 1 is a cube root of unity, show that (a + b omega + c omega^(2))/(b + c omega + a omega^(2))+ (a + b omega + c omega^(2))/(c + a omega + b omega^(2)) = -1

If omega pm 1 is a cube root of unity, show that (1 + omega) (1 + omega^(2))(1 + omega^(4))(1 + omega^(8))…(1 + omega^(2^(11))) = 1

If omega ne 1 is a cubic root of unit and (1 + omega)^(7) = A + B omega , then (A, B) equals

If omega ne 1 is a cube root of unity, show that (i) (1-omega+omega^(2))^(6)+(1+omega-omega^(2))^(6)=128 (ii) (1+omega)(1+omega^(2))(1+omega^(4))(1+omega^(8))…2n terms=1

If omega is the cube root of unity, then then value of (1 - omega) (1 - omega^(2))(1 - omega^(4))(1 - omega^(8)) is

If omega pm 1 is a cube root of unity, show that (1 - omega + omega^(2))^(6) + (1 + omega - omega^(2))^(6) = 128

If omega ne 1" and "omega^(3)=1 , the (a omega+b + c omega^(2))/(a omega^(2)+b omega+c)+(a omega^(2)+b+c omega)/(a+b omega+c omega^(2)) is equal to