Home
Class 12
MATHS
If a^(2) + b^(2) + c^(3) + ab + bc + ca ...

If `a^(2) + b^(2) + c^(3) + ab + bc + ca le 0` for all, `a, b, c in R`, then the value of the determinant
`|((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))|`, is equal to

A

`65`

B

`a^(2)+b^(2)+c^(2)+31`

C

`4(a^(2)+b^(2)+c^(2))`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` We have `a^(2)+b^(6)+c^(2)+ab+bc+ca le 0`
`:.(a+b)^(2)+(b+c)^(2)+(c+a)^(2)le0`
`:.a+b=0`, `b+c=0` and `c+a=0`
`:.a=b=c=0`
`implies|{:((a+b+2)^(2),a^(2)+b^(2),1),(1,(b+c+2)^(2),b^(2)+c^(2)),(c^(2)+a^(2),1,(c+a+2)^(2)):}|=|{:(4,0,1),(1,4,0),(0,1,4):}|=65`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos

Similar Questions

Explore conceptually related problems

Show that |((a+b)^(2),(a-b)^(2),ab),((b+c)^(2),(b-c)^(2),bc),((c+a)^(2),(c-a)^(2),ca)|

Prove that |(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2))|=4a^(2)b^(2)c^(2).

Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) ]:} =4a^(2) b^(2) c^(2)

Show that |(b+c,bc,b^(2)c^(2)),(c+a,ca,c^(2)a^(2)),(a+b,ab,a^(2)b^(2))|=0 .

By using properties of determinants , show that : {:[( a^(2) + 1, ab,ac),(ab,b^(2) + 1,bc),( ca, cb, c^(2) +1) ]:}= 1+a^(2) +b^(2) +c^(2)

Show that |{:(b+c,bc,b^(2)c^(2)),(c+a,ca,c^(2)a^(2)),(a+b,ab,a^(2)b^(2)):}| = 0

Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) ]:} ={:[( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) ]:}

Prove that |{:(a,,a^(2),,bc),(b ,,b^(2),,ac),( c,,c^(2),,ab):}| |{:(1,,1,,1),(a^(2) ,,b^(2),,c^(2)),( a^(3),, b^(3),,c^(3)):}|

Find the product (2a + b+c) (4a ^(2) + b ^(2) + c ^(2) - 2ab -bc -2ca)

The value of the determinant |k a k^2+a^2 1k b k^2+b^2 1k c k^2+c^2 1| is k(a+b)(b+c)(c+a) k a b c(a^2+b^(f2)+c^2) k(a-b)(b-c)(c-a) k(a+b-c)(b+c-a)(c+a-b)