Home
Class 12
MATHS
If Y=SX, Z=tX all the variables being di...

If `Y=SX`, `Z=tX` all the variables being differentiable functions of `x` and lower suffices denote the derivative with respect to `x` and `|{:(X,Y,X),(X_(1),Y_(1),Z_(1)),(X_(2),Y_(2),Z_(2)):}|+|{:(S_(1),t_(1)),(S_(2),t_(2)):}|=X^(n)`, then `n=`

A

`1`

B

`2`

C

`3`

D

`4`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` `Delta=|{:(X,SX,tX),(X_(1),SX_(1)+S_(1)X,tX_(1)+t_(1)X),(X_(2),SX_(2)+2S_(1)X_(1)+S_(2)X,tX_(2)+2t_(1)X_(1)+t_(2)X):}|`
`({:(C_(2)toC_(2)-SC_(1)),(C_(3)toC_(3)-tC_(1)):})`
`=|{:(X,0,0),(X_(1),S_(1)X,t_(1)X),(X_(2),2S_(1)X_(1)+S_(2)X,2t_(1)X_(1)+t_(2)X):}|`
`=X^(2)|{:(S_(1),t_(1)),(2S_(1)X_(1)+S_(2)X,2t_(1)X_(1)+t_(2)X):}|`
`=X^(3)|{:(S_(1),t_(1)),(S_(2),t_(2)):}|(R_(2)toR_(2)-2X_(1)R_(1))`
`:.n=3`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos

Similar Questions

Explore conceptually related problems

Find the scalar components and magnitude of the vector joining the points P(x_(1), y_(1), z_(1)) and Q (x_(2), y_(2), z_(2)) .

Evaluate |{:(.^(x)C_(1),,.^(x)C_(2),,.^(x)C_(3)),(.^(y)C_(1),,.^(y)C_(2),,.^(y)C_(3)),(.^(x)C_(1),,.^(z)C_(2),,.^(z)C_(3)):}|

|((x+1/x)^(2),(x-1/x)^(2),1),((y+1/y)^(2),(y-1/y)^(2),1),((z+1/z)^(2),(z-1/z)^(2),1)|

Find the range of the function f={(1,x),(1,y),(2,x),(2,y),(3,z)}

for x,x,z gt 0 Prove that |{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0

Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,c,,c),(x,,y,,z),(yz,,xz,,xy):}|

Show that |(1,1,1),(x,y,z),(x^(2),y^(2),z^(2))|=(x-y)(y-z)(z-x)

Find the partial derivatives of the functions at the indicated point h (x, y,z) =x sin (xy) + z ^(2)x, (2, (pi)/(4), 1)

Let x_(1)" and "y_(1) be real numbers. If z_(1)" and "z_(2) are complex numbers such that |z_1|=|z_2|=4 , then |x_(1)z_(1)-y_(1)z_(2)|^(2)+|y_(1)z_(1)+x_(1)z_(2)|^(2)=

Find the point of intersection of the lines (x-1)/(3)=(y-1)/(-1) = z+2’and (x-4)/(2)=y=(z+1)/(3) .