Home
Class 12
MATHS
If w ne 1 is a cube root of unity and De...

If `w ne 1` is a cube root of unity and `Delta=|{:(x+w^(2),w,1),(w,w^(2),1+x),(1,x+w,w^(2)):}|=0`, then value of `x` is

A

`0`

B

`2`

C

`-1`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` Applying `C_(1)toC_(1)+C_(2)+C_(3)`.
We get `Delta=|{:(x+w^(2)+w+1,w,1),(w+w^(2)+1+x,w^(2),1+x),(1+x+w+w^(2),x+w,w^(2)):}|`
`=|{:(x,w,1),(x,w^(2),1+x),(x,x+w,w^(2)):}|` [using `1+w+w^(2)=0`]
`Delta` is clearly equal to `0` for `x=0`.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos

Similar Questions

Explore conceptually related problems

If omega ne 1 is a cubit root unity and |(1,1,1),(1,-omega^(2)-1,omega^(2)),(1,omega^(2),omega^(7))| = 3 k, then k is equal to

If w is a non real cube of unity, then (a+b)(a+bw)(a+bw^2) =

If omega(!= 1) be an imaginary cube root of unity and (1+omega^2)=(1+omega^4), then the least positive value of n is (a) 2 (b) 3 (c) 5 (d) 6

If omega ne 1 is a cubic root of unit and (1 + omega)^(7) = A + B omega , then (A, B) equals

If 1, omega omega^(2) are the cube roots of unity show that (1 + omega^(2))^(3) - (1 + omega)^(3) = 0

if w is a complex cube root to unity then value of Delta =|{:(a_(1)+b_(1)w,,a_(1)w^(2)+b_(1),,c_(1)+b_(1)bar(w)),(a_(2)+b_(2)w,,a_(2)w^(2)+b_(2),,c_(2)+b_(2)bar(w)),(a_(3)+b_(3)w,,a_(3)w^(2)+b_(3),,c_(3)+b_(3)bar(w)):}| is

If omega is a non real cube root of unity, then (a+b)(a+b omega)(a+b omega^2)=

If omega pm 1 is a cube root of unity, show that (1 - omega + omega^(2))^(6) + (1 + omega - omega^(2))^(6) = 128