Home
Class 12
MATHS
Let |A|=|a(ij)|(3xx3) ne0 Each element ...

Let `|A|=|a_(ij)|_(3xx3) ne0` Each element `a_(ij)` is multiplied by by `k^(i-j)` Let `|B|` the resulting determinant, where `k_1 |A|+k_2 |B| =a` then `k_1+k_2 =`

A

`1`

B

`-1`

C

`0`

D

`2`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` `|A|=|{:(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33)):}|`
`|B|=|{:(a_(11),k^(-1)a_(12),k^(-2)a_(13)),(ka_(21),a_(22),k^(-1)a_(23)),(k^(2)a_(31),ka_(32),a_(33)):}|`
`=(1)/(k^(3))|{:(k^(2)a_(11),ka_(12),a_(13)),(k^(2)a_(21),ka_(22),a_(23)),(k^(2)a_(31),ka_(32),a_(33)):}|`
`=|A|`
`k_(1)|A|+k_(2)|B|=0`
`:.k_(1)+k_(2)=0`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos

Similar Questions

Explore conceptually related problems

If A=(a_(ij))_(2xx2) .Where a_(ij) is given by (i-2j)^(2) then A is:

Detemine the matrix A = (a_(ij))_(3 xx 2) if a_(ij) = 3i - 2j

If a_(ij)=(1)/(2) (3i-2j) and A = [a_(ij)]_(2xx2) is

If a_(ij)=i^(2)-j and A=(a_(ij))_(2xx2) is:

Let P=[a_("ij")] be a 3xx3 matrix and let Q=[b_("ij")] , where b_("ij")=2^(i+j) a_("ij") for 1 le i, j le 3 . If the determinant of P is 2, then the determinant of the matrix Q is

If A=(a_(ij))_(2xx3),B=(b_(ij))_(2xx3) then the order of AB will be