Home
Class 12
MATHS
Let x gt 0, y gt 0, z gt 0 are respectiv...

Let `x gt 0`, `y gt 0`, `z gt 0` are respectively the `2^(nd)`, `3^(rd)`, `4^(th)` terms of a `G.P.`and `Delta=|{:(x^(k),x^(k+1),x^(k+2)),(y^(k),y^(k+1),y^(k+2)),(z^(k),z^(k+1),z^(k+2)):}|=(r-1)^(2)(1-(1)/(r^(2)))` (where `r` is the common ratio), then

A

`k=-1`

B

`k=1`

C

`k=0`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` `Delta=x^(k)y^(k)z^(k)|{:(1,ar,a^(2)r^(2)),(1,ar^(2),a^(2)r^(4)),(1,ar^(3),a^(2)r^(6)):}|`
`=a^(3k)*r^(6k)*a^(3)r^(3)|{:(1,1,1),(1,r,r^(2)),(1,r^(2),r^(4)):}|`
`=a^(3(k+1))*r^(6k+3)*(1-r)(r-r^(2))(r^(2)-1)`
Clearly, `k=-1`
`:. Delta=r^(-2)(1-r)^(2)(r^(2)-1)`
`=(r-1)^(2)(1-(1)/(r^(2)))`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Comprehension|2 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos

Similar Questions

Explore conceptually related problems

If x gt 1, y gt 1, z gt 1 are in G.P then 1/(1 + log x),1/(1 + log y),1/(1 + log z) are in

Find the least number common multiple of xy(k^(2)=1)+k(x^(2)+y^(2)) and xy(k^(2)-1)+k(x^(2)-y^(2)) .

If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, then find the value of k.

Given (1-x^(3))^(n)=sum_(k=0)^(n)a_(k)x^(k)(1-x)^(3n-2k) then the value of 3*a_(k-1)+a_(k) is

The value of |[yz, z x,x y],[ p,2q,3r],[1, 1, 1]|,w h e r ex ,y ,z are respectively, pth, (2q) th, and (3r) th terms of an H.P. is a. -1 b. 0 c. 1 d. none of these

Let overset(to)(a_(r))=x_(r )hat(i)+y_(r )hat(j)+z_(r )hat(k),r=1,2,3 three mutually prependicular unit vectors then the value of |{:(x_(1),,-x_(2),,x_(3)),(y_(1),,y_(2) ,,y_(3)),(z_(1),,z_(2),,z_(3)):}| is equal to

If A=[(3,-4),(1,-1)] prove that A^k=[(1+2k,-4k),(k,1-2k)] where k is any positive integer.

If x^2+y^2=R^2(w h e r eR >0)a n dk=(y prime prime)/((1+yprime^ 2)^3) then find k in terms of R alone.

for x,x,z gt 0 Prove that |{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0